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Abstract

Performs a weighted sum of images, with weights optimized for the detection of

sources with a give spectrum.

1 Instruments/Modes

Instrument Mode

2 Use

pipeline processing yes/no
interactive analysis yes/no

3 Description

3.1 Introduction

Suppose we have two images of the same part of the sky, taken by the same instrument, in the same
energy band and containing the same fraction of background contribution. Clearly, summing these
together yields an increase in the sensitivity of detection of point sources. In fact the summed image will
be indistinguishable from a single image taken with an exposure duration equal to the sum of the two
individual durations.

The situation is otherwise if one of the pair of images contains a much lower ratio of source-to-background
than the other. In this case, summing the images can actually lead to a decrease in detection sensitivity:
in the limiting case it is better just to keep the image with the higher source-to-background and throw
the other away.

These two scenarios may be thought of as extreme cases of the more general procedure of forming a
weighted sum of the two images. Indeed we may expect that, for the general case where an image Isum
is formed as the weighted sum of N contributory images Ii,
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Isum =

∑

N

i=1 wiIi
∑

N

i=1 wi

,

a set of values of the weights wi exists which maximizes the source-detection sensitivity. It is the task
of imweightadd to estimate these optimum weights for the given input images and to apply them to
calculate Isum.

Before working out an algorithm for calculating the optimum weights it is necessary to say quantitatively
what we mean by ‘source detection’ and ‘detection sensitivity.’

3.2 Source detection

Where we have just a single image we assume a probabilistic mode of source detection such that, at a
given image pixel, if the probability P that the observed value at that pixel could have arisen through
statistical fluctuation of the background at that pixel lies below a certain limiting probability Pcutoff , the
pixel is considered to contain a source. In XMM practice it is likelihood L = − lnP rather than P itself
which is employed; in this case the detection criterion is for L to exceed the cutoff Lcutoff = − lnPcutoff .

Matters become more complicated when one has N images taken in different energy bands (or in other
differing circumstances). If one has no knowledge of the source spectrum then the best approach is
probably to do as eboxdetect does, that is to calculate detection likelihood for all the images separately,
then add these numbers together. A sum of independent likelihood values like this can be shown to have
a null-hypothesis probability distribution Psum approximately given by the formula

Psum = Q
(

N,
N
∑

i=1

Li

)

, (1)

where Q is the incomplete gamma function

Q(a, x) =

∫

∞

x
dt e−1 ta−1

∫

∞

0
dt e−1 ta−1

.

The final step in the eboxdetect approach is to calculate Psum as per equation 1 then test Lsum =
− lnPsum against the cutoff likelihood as for the single-image case.

The alternative used in the present task is to make a weighted sum of the input images, then perform
source detection on the single summed image. For probabilistic detection to work in this scenario we need
to find the probability distribution of a weighted sum of Poisson variates. Full discussion of this issue
is postponed until section 3.4; suffice it to say here that an approximate expression for this probability
distribution has been found. The detection scheme then works like any other: for each pixel, the likelihood
that the detected value could have resulted through chance is calculated, and the pixel is designated as
a source if the threshhold likelihood is exceeded.

The drawback to the eboxdetect approach is that, at image pixels where there is a substantial contri-
bution from a source, the values at this pixel in the different images are no longer independent samples
of the background - one expects them all to be higher than the background in general and, if the source
spectrum is known, one has additionally some expectation of the ratios at that pixel between the im-
ages. It seems likely that the present approach to multi-image detection, which makes use of an a priori
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assumption about the source spectrum, will offer greater sensitivity (to sources which actually have this
spectrum) than the eboxdetect method. At present there is no analytical proof of this, but empirical
trials are planned.

So far I have been talking about source spectra, but it is worth emphasising that the same approach can
be used in any situation where the ratio between expectation values of source counts over input images
obtained in varying circumstances can be estimated. For instance, suppose one wants to perform source
detection upon three images, all made in the same energy band, but each by a different XMM EPIC
instrument. The ratio between source counts expected in the three instruments can be estimated from
their respective effective area curves. These ratios are, for a narrow enough energy band, insensitive to
variations in spectrum from source to source.

3.3 Detection sensitivity

Suppose one has a random variate c with a probability distribution p(c). The nett probability that a
given sample of c is due to chance is the integral of p from c to ∞:

P (c) =

∫

∞

c

dx p(x).

In the case of a single pixel of a single image, p(c) is the Poisson distribution about the expectation
value of the counts due to background, 〈b〉. As described in section 3.2, we say there is a source present
in this pixel if L = − lnP is larger than a cutoff value Lcutoff . In principle it is possible to invert the
relationship between detected counts c and likelihood L, to calculate that value of c which would give
L = Lcutoff . This value of ccutoff , minus the expectation due to background 〈b〉, is defined here as the
detection sensitivity.

Note that this does not mean that a source with an expectation value of counts 〈s〉 which is greater than
ccutoff −〈b〉 will always be detected. There are always statistical fluctuations to consider. The probability
that a source with 〈s〉 = ccutoff − 〈b〉 will be detected is the integral from a to infinity of the Poisson
distribution with expectation value a equal to ccutoff − 〈b〉. This is equal to 0.5 in the limit of large a,
but becomes significantly less than 0.5 for a < about 1. Also, the detection cutoff is naturally not sharp:
fainter sources have still some non-zero probability of detection, and sources brighter than cutoff have
always some non-zero probability of non-detection.

Where one is performing source detection in parallel on N > 1 images, there are N inputs to the
calculation of nett likelihood at any given pixel. In this circumstance it is no longer possible to invert
this calculation to obtain a single detection sensitivity, since there may be more than one combination of
counts which yield the same nett L. Here a definition of sensitivity only makes sense in connection with a
fixed source spectrum, as follows. Suppose that at the pixel in question the expected count values 〈ci〉 are
made up from background 〈bi〉 plus source 〈si〉. (The expectation value of two summed Poisson variates
is equal to the sum of the two expectation values.) Suppose also that we know the source spectrum and
are thus able to express the source counts as a product between this spectrum and some nett intensity S:

〈si〉 = 〈S〉
〈si〉

∑

N

i
〈si〉

.

Regardless of the precise algorithm employed, likelihood L is some function of the counts ci, ie

L = f(ci).
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The detection sensitivity Scutoff can therefore be defined implicitly as follows:

Lcutoff = f

(

〈bi〉+ Scutoff
〈si〉

∑

N

i
〈si〉

)

. (2)

3.4 Null-hypothesis probability distribution for a weighted sum of Poissonian
variates

The approach followed in the present section is essentially that of Fay and Feuer [1]. See also Stewart [?]

Let X be a random deviate which follows a Poissonian probability distribution about the expectation
value a = 〈X〉. Although the Poisson distribution itself is only defined for integer X, one can find the
following continuous ‘envelope function’ to the Poisson values:

e(X; a) =
aX exp(−a)

Γ(X + 1)
, (3)

where Γ is the gamma function

Γ(a) =

∫

∞

0

dt e−1 ta−1.

Note that both the expectation value 〈X2〉 and variance 〈X〉 − 〈X〉2 of the function e are identical to
those of the corresponding discrete Poisson distribution, namely both equal to a. Now, given N random
deviates Xi, each of which follows a distinct Poisson distribution about its average ai, let us form the
weighted sum

Y =

N
∑

i=1

wiXi.

The expectation value µ of Y is

µ = 〈Y 〉 =

N
∑

i=1

wi〈Xi〉 =

N
∑

i=1

wiai;

the variance v can in similar fashion be shown to equal

v =

N
∑

i=1

w2
i
ai.

The probability function p(Y ) only has values where all the Xi are integer and generally speaking may
be expected to be a messy-looking and intractable function. However, recall that for purposes of source
detection we are not interested in p but in the integral P of p from a particular sample y of Y to infinity.
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P is stepwise continuous, the steps becoming smaller and denser as y increases. The envelope function
with the same expectation value and variance as Y is given by

e(Y ;µ, v) =
(kµ)(kY )exp(−kµ)

Γ(kY + 1)
, (4)

where

k = µ/v.

In plain English, what comparison of equations 3 and 4 suggests is that a weighted sum of Poisson variates
behaves approximately like a single Poisson distribution with the same average and variance. Therefore
since, for a single Poisson variate X, the probability P for X to be greater than some sampled value x is
given by

P (X ≥ x; a) = 1−Q(x, a)

(where Q is the incomplete gamma function we met with in section 3.2) we postulate that the equivalent
expression for Y is approximately given as follows:

P (Y ≥ y;µ, v) ∼ 1−Q(ky, kµ). (5)

Equation 5 is used both in the present program and in boxdetect to estimate the null-hypothesis
probability distribution of the weighted sum of Poissonian images.

3.5 Estimation of the optimal weights

In order to estimate the optimal weights, imweightadd needs two lists: a list of background maps and
a list of source relative expectation values σi.

The first job is to reduce each background map to a single representative value βi of background counts
per pixel. This is done by making a histogram of all the non-zero values in each map and selecting the
value which falls nearest the 90% mark on the histogram. The rationale behind this is as follows. Source
detection is likely to be most sensitive near the centre of the image; this is also the place where one
would expect the maximum to be in the background values. Hence it makes sense to choose a value
which is nearer to the maximum value than to the minimum. However there is also the possibility of
local increases in background due to out-of-time events or such like. Because of this possibility it was
thought undesirable to pluck the background value right from the top of the tree so to speak: hence the
90% figure was arrived at as a compromise.

The next thing is to normalize the σs to 1. Naturally at least one of them must be non-zero.

imweightadd then performs a minimisation via a simplex algorithm. The quantity to be minimized is
the detection sensitivity as defined in section 3.3. The analogue of equation 2 in the present case is

Lcutoff = − ln[1−Q(kycutoff , kµ)] (6)
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where

ycutoff =
N
∑

i=1

wi(βi + Scutoffσi),

µ =

N
∑

i=1

wiβi,

v =

N
∑

i=1

w2
i
βi,

and

k = µ/v

as before. At each step, equation 6 is inverted numerically via a Ridders-method algorithm to yield
the sensitivity Scutoff . The minimization procedure therefore arrives at the set of weights which yield
the minimum value (within convergence limits) of Scutoff . These weights are then applied to generate
weighted sums of the input images and also the input background maps and exposure maps.

4 Parameters

This section documents the parameters recognized by this task (if any).
Parameter Mand Type Default Constraints

imagesets yes dataset
list

List of N input images to be summed. They must all have the same pixel dimensions.

outimageset no dataset outimage.ds

The output image, equal to
∑

N

i=1 wi imagesets.

tempset no dataset tempimage.ds
Name of a temporary image dataset (for pipeline use).

calculateweights no bool no
If this parameter = ‘no’, the input images are simply summed, and neither background maps or exposure
maps are required inputs. Contrariwise for ‘yes’.

bkgmapsets yes dataset
list

List of background maps to be summed. They must all have the same pixel dimensions as the imagesets,
and there must be the same number of members in each list. Each background map should correspond
with the image at the same place in the respective list. This parameter is only read if calculateweights=‘yes’.
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outbkgmapset no dataset outbkgmap.ds

The output background map, equal to
∑

N

i=1 wi bkgmapsets. This parameter is only read if calculateweights=‘yes’.

expmapsets yes dataset
list

List of exposure maps to be summed. They must all have the same pixel dimensions as the imagesets,
and there must be the same number of members in each list. Each exposure map should correspond with
the image at the same place in the respective list. This parameter is only read if calculateweights=‘yes’.

outexpmapset no dataset outexpmap.ds

The output exposure map, equal to
∑

N

i=1 wi expmapsets. This parameter is only read if calculateweights=‘yes’.

withrelsrcrates no bool no
Whether to read the relative source-count expectation values (‘source spectrum’) from parameter relsrcrates.
If withrelsrcrates=‘no’, these relative rates are all set to 1. This parameter is only read if calculateweights=‘yes’.

relsrcrates yes real list 1.0 0 <relsrcrates
This parameter is read if calculateweights=‘yes’ and withrelsrcrates=‘yes’.

likemin no real 10.0 0 <likemin
The cutoff value of likelihood.

5 Errors

This section documents warnings and errors generated by this task (if any). Note that warnings and
errors can also be generated in the SAS infrastructure libraries, in which case they would not be docu-
mented here. Refer to the index of all errors and warnings available in the HTML version of the SAS
documentation.

label (error)
explanation

label (warning)

corrective action: ********

6 Input Files

1. ********
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7 Output Files

1. ********

8 Algorithm

********

9 Comments

• ********
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