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Why do we need Statistics?
• How do we take decisions in Science?

Tools: instruments, data collections, reduction, 
classifications – tools and techniques

Decisions: is this hypothesis correct? Why not? Are 
theses data consistent with other data? Do we get 
an answer to our question? Do we need more 
data?

• Comparison to decide :
– Describe properties of an object or sample: 

Example:
 Is a faint extention 
a jet or a point source?

GB 1508+5714 
z=4.3

Siem igin ow ska et al (2003)
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Stages in Astronomy Experiments

OBSERVE Carefully Experiment design, What? Number 
exposure time  (S) of objects, Type? (S)

REDUCE Algorithms calibration files data quality
QE,RMF,ARF,PSF (S) Signal-to-Noise (S) 

  
ANALYSE Parameter Intensity, positions Frequentist

Estimation,   (S) Bayesian?
Hypothesis
testing (S)                                              (S)

CONCLUDE       Hypothesis Distribution tests, Belivable,
testing  (S) Correlations (S) Repeatable,

Understandable? (S)

REFLECT Carefully Mission achieved? The next 
A better way? Observations (S)
We need more data!
(S)

 Stage How Example Considerations

Wall & Jenkins (2003)
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 Statistic is a quantity that summarizes data

=> Astronomers cannot avoid Statistics

Statistics are combinations of data that do 
not depend on unknown parameters:
Mean, averages from multiple experiments 
etc.
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Probability

Numerical formalization of 
our degree of belief. 

Number of favorable events

   Total number of  events

Example 2: 
Use data to calculate probability, 
thus the probability of a cloudy 
observing run:

number of cloudy nights last year    

365 days

Issues:
• limited data
• not all nights are equally likely to 
be cloudy

Laplace principle of indifference:
  
All events have equal probability
 
Example 1:
1/6 is the probability of throwing a 6 
with 1 roll of the dice BUT the dice can 
be biased! =>  need to calculate the 
probability of each face
 

=>
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Properties of Probability

Formalize the “measure of belief”:

A,B,C – three events and we need to measure 
how strongly we think each is likely to happen 
and apply the rule:

If A is more likely than B, and B is more 
likely than C, then A is more likely than C.

•  Any random event A has a probability 

         prob(A) between 0 and 1

• The sure event prob(A) = 1

• If A and B are exclusive (A∩B=0),  disjoint events then  
            prob(A∪B) = prob(A) +prob(B)

Kolmogorov axioms – 
              Fundation of the Theory of Probability
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Conditionality and Independence
 A and B events are independent if the probability of 
one is unaffected by what we know about the other:

prob(A and B)=prob(A)prob(B)

If the probability of A depends on what we know about B   
 A given B    =>  conditional probability

                        prob(A and B)
                  prob(A|B)=

    prob(B)
 

If A and B are independent => prob(A|B)=prob(A)

If there are several possibilities for event B (B
1
, B

2
....)

   prob(A) = ∑prob(A|B
i
) prob(B

i
)

A – parameter of interest
B

i
 – not of interest, instrumental parameters, background 

prob(B
i
) - if known we can sum (or integrate) - Marginalize 
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Bayes' Theorem
Bayes' Theorem is derived by equating:

prob(A and B) = prob (B and A)

                 prob (A|B) prob(B)
         prob(B|A) =

                        prob(A)

Gives the Rule for induction:  
   the data, the event A,  are succeeding B, the state of belief preceeding 
   the experiment.

 prob(B) – prior probability which will be modified by experience
 prob(A|B) – likelihood 
 prob(B|A) – posterior probability – the state of belief after the 

data have been analyzed
 prob(A) – normalization



4th International X-ray Astronomy School            
        Cambridge, August 15-19, 2005

Statistics, 
Aneta Siemiginowska

Example
A box with colored balls: 
          what is the content of the box?

   prob(content of the box | data) ∝ prob(data | content of the box)

Experiment:
 N red balls 

  M white balls
  N+M = 10 total, known
 Draw 5 times (putting back) (T) and
 get 3 red balls (R)
 How many red balls are in the box?

 Model (our hypothesis) =>                N
prob(R) = 

      N+M
           

  Likelihood = (   ) prob(R)R prob(M)T-R 
T
R

T=5
T=50
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Example
From a paper by Martinez-
Sansigre et al published in 
Aug 4, 2005 issue of Nature

q – quasar fraction

       Type-1 quasars         N1
q=                              =
      Type-1 + Type-2    N1+N2  

<N1> - number of Type-1 qso
<N2> - number of Type-2 qso

1/ take Poisson likelihood with the 
mean <N2> = (1-q)<N1>/q
2/ evaluate likelihood at each q and N1
3/ integrate P(N1|q)P(N1) over N1

Posterior Probability distribution for the 
quasar fractionWhat is the fraction of the       

unobscured quasars?

Use new Spitzer observations

p(q|data,{type-1 qso}) = p(data|q,{type-1 qso})

Include 
only 5 qso

5+6 qso

Torus 
Models
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Probability Distributions

Probability  is crucial in decision process: 

Example: 

 

Limited data yields only partial idea about the line 
width in the spectrum. We can only assign the 
probability to the range of the line width roughly 
matching this parmeter. We decide on the presence 
of the line by calculating the probability.
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Definitions

• Random variable:  a variable which can take on different 
numerical values, corresponding to different experimental 
outcomes. 

– Example: a binned datum Di , which can have different values 
even when an experiment is repeated exactly. 

• Statistic: a function of random variables. 

– Example: a datum D i , or a population mean 

• Probability sampling distribution: the normalized distribution 
from which a statistic is sampled. Such a distribution is 
commonly denoted p  (X  |  Y  ), “the probability of outcome X given 
condition(s) Y,” or sometimes just p (X ). Note that in the special 
case of the Gaussian (or normal) distribution, p  (X  ) may be 
written as  N(μ,σ  

2), where  μ  is the Gaussian mean, and  σ  
2 is its 

variance. 

1( / )N
i iD Nµ =∑=   
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The discrete Poisson distribution:

      prob(D
i
)=

probability of finding Di events (counts) in bin i
(energy rage) of dataset D (spectrum) in a 
given length of time (exposure time), if the 
events occur independently at a constant rate 
Mi  (source intensity). 

The Poisson Distribution

Things to remember:
• Mean   μ=  E [D i] =  Mi  
• Variance:   V [D i] =  Mi

• cov [D i1  , D i2
] =  0  = >  independent

• the sum of n  Poisson-distributed 
variables is itself Poisson-
distributed with variance:                   

Collecting X-ray data  => Counting individual photons 
                 => Sampling from Poisson distribution

( | )
!

i

i

D
Mi

i i

i

M
p D M e

D
−=

1
n
i iM=∑

iM → ∞As            Poisson distribution 
converges to Gaussian distribution
 N(μ = Mi ; σ2 = Mi )
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Integer counts spectrum sampled from a constant amplitude model with mean μ = 60 counts, 
and fit with a parabolic model. 

Example:
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Example of a two-dimensional integer counts spectrum.  Top Left: Chandra ACIS-S data of X-
ray cluster  MS 2137.3-2353, with ds9 source regions superimposed. 
Top Right: Best-fit of a two-dimensional beta model to the filtered data. 
Bottom Left: Residuals (in units of σ ) of the best fit.   
Bottom Right: The applied filter; the data within the ovals were excluded from the fit. 

Example2
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Comparison of Poisson distributions (dotted) of mean μ = 2 and 5 with normal distributions of the same 
mean and variance (Eadie et al. 1971, p. 50). 

Poisson vs. Gaussian Distributions – Low Number of Counts

μ=2

μ=5
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Comparison of Poisson distributions (dotted) of mean μ =  10, 25 and 40 with normal distributions of the same 
mean and variance (Eadie et al. 1971, p. 50). 

μ=10

μ=25

μ=40

Poisson vs. Gaussian Distributions
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Gaussian Distribution
For large μ->∞ Poisson (and the Binomial, large T) 
distributions converge to Gaussian (normal) distributions. 

         1
prob(x) =             exp[-(x-μ)2/2σ2]

      σ√2π 

Mean - μ
Variance - σ2

Note:  Importance of the Tails!

+/-2σ range covers 95.45% of the area, so 2σ result 
has less than 5% chance of occurring by chance, but 
because of the error estimates are difficult this is not 
the acceptable result. Usually 3σ or 10σ  have to be 
quoted and the convergence to Gaussian fastest in 
the center than in the tails!
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Central Limit Theorem

The true importance of the Gaussian distribution 

Form averages M
n 
 from repeated 

drawing of n samples from a 
population with finite mean μ and 
variance σ2

(M
n
-μ)

          
 σ/√n          as n ∞            →

       μ=0, σ2=1

=> Gaussian 
Distribution

single

averages 
of 4

averages 
of 2

averages 
of  16

200 y values drawn from exp(-x) function
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Bayesian vs. Classical 

Classical Approach: 

Assuming the true distance D
0
  then 

D is normally distributed around  D
0 
 

with a standard deviation of 0.1. 
Repeating measurement will yield 
many estimates of distance D  which 
all scatter around true D

0.

Assume the thing (distance) we 
want to know and tell us 
how the data will behave.

Bayesian Approach:

Deduce directly the probability 
distribution of D

0
 from the data. 

Assumes the data and tell us the 
thing we want to know. No 
repetition of experiment.

Example: 
              D = 8.5∓0.1 Mpc 
Does not describe probability that a true value is between 8.4 and 8.6.
We assume that a Gaussian distribution applies and knowing the distribution 
of errors we can make probabilistic statements.
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What do we really do?
Example:

I've observed my source, reduce the data and finally got my X-ray 
spectrum –  what do I do now? How can I find out what does the 
spectrum tell me about the physics of my source?

Run XSPEC or Sherpa! But what do those programs really do?

Chandra ACIS-S

Fit the data => C(h)=∫R(E,h) A(E) M(E,θ)dE 

Assume a model and look for the best model 
parameters which  describes the observed 
spectrum.

Need a Parameter Estimator - Statistics

Counts Response
     Effective Area

Model

h- detector channels
E- Energy
θ- model parameters
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Statistics

(1) Statistics indicating the location of the data: 
 
   Average:   <X> = (1/N) ∑

i
  X

i
 

   Mode: location of the peak in the histogram; the value 
occuring most frequently

(2) Statistics indicating the scale or amount of scatter:

   Mean deviation: <ΔX> = (1/N) ∑
i
  |X

i
 -<X>|

   Mean square deviation: S2 = (1/N) ∑
i
  (X

i
 -<X>)2

     Root Mean Square deviation: rms = S
 
   



4th International X-ray Astronomy School            
        Cambridge, August 15-19, 2005

Statistics, 
Aneta Siemiginowska

Parameter Estimators

Large variance

Best

Biased

θ
0

St
at

is
t i

c

Requirements on Statistics:

• Unbiased  
- converge to true value with 
repeated measurements

• Robust 
– less affected by outliers

• Consistent 
– true value for a large sample 
size (Example: rms and 
Gaussian distribution)

• Closeness 
- smallest variations from the 
truth
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If the hypothesized θ  is close to the true value, then we expect 
a high probability to get data like that which we actually found.

So we define the maximum likelihood (ML) estimator(s) to be 
the parameter value(s) for which the likelihood is maximum.
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One can use the Poisson distribution to assess the probability of 
sampling a datum Di given a predicted (convolved) model amplitude Mi. 
Thus to assess the quality of a fit, it is natural to maximize the product 
of Poisson probabilities in each data bin, i.e., to maximize the Poisson 
likelihood: 

                          

In practice, what is often maximized is the log-likelihood, 

L  = logℒ.  A well-known statistic in X-ray astronomy which is related 
to L is the so-called “Cash statistic”: 

2 [ log ] 2 ,
N

i i i
i

C M D M L≡ − −∑

Maximum Likelihood:
Assessing the Quality of Fit

exp( ) ( | )
!

iD
N N N

i
i i i i

i i i
i

M
M D M

D
= = − =∏ ∏ ∏iL L p

∝
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(Non-) Use of the Poisson Likelihood

In model fits, the Poisson likelihood is not as commonly used as it 
should be. Some reasons why include: 

•  a historical aversion to computing factorials; 

•  the fact the likelihood cannot be used to fit “background subtracted” 
spectra; 

•  the fact that negative amplitudes are not allowed (not a bad thing 
physics abhors negative fluxes!);

•  the fact that there is no “goodness of fit" criterion, i.e. there is no easy 
way to interpret ℒmax (however, cf. the CSTAT statistic); and 

•  the fact that there is an alternative in the Gaussian limit: the 2 
statistic. 
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2   Statistic

Definition:   2  = ∑
i 
(D

i
-M

i
)2/M

i

The 2 statistics is minimized in the fitting the 
data, varying the model parameters until the best-
fit model parameters are found for the minimum 
value of the 2  statisic

Degrees-of-freedom = k-1- N 

N – number of parameters
K – number of spectral bins
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Confidence Limits

Essential issue = after the bets-fit parameters are found 
estimate the confidence limits for them. The region of 
confidence is given by (Avni 1976):

2

=2

min 
+(,)

 - degrees of freedom
 - significance
2

min
  - minimum 

 - depends only on the number of 
         parameters involved
        nor on goodness of fit

Significance      Number of parameters
         1      2        3
 
 0.68  1.00  2.30   3.50
 0.90  2.71  4.61   6.25
 0.99  6.63  9.21   11.30   
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Example of a “well-behaved” statistical surface in 
parameter space, viewed as a multi-dimensional 
paraboloid (χ2, top ), and as a multi-dimensional 
Gaussian (exp (- χ2 / 2) ≈ L, bottom ).

CalculatingConfidence Limits 
means  Exploring  the Parameter 
Space - Statistical Surface
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Behaviour of Statistics for One Parameter

Comparison of Two methods in Sherpa
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Confidence Limits for Two Parameters

1σ, 2σ, 3σ contours
+ Best fit parameters

Comparison of Two methods in Sherpa
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The version of  χ2  derived above is dubbed “data variance”  χ2 , or      , 
because of the presence of D in the denominator. Generally, the χ2  statistic 
is written as: 

where       represents the (unknown!) variance of the Poisson distribution 
from which Di is sampled. 

  χ2  Statistic
Data Variance  Di 

Model Variance  Mi

Gehrels
Primini  Mi from previous best-fit

Churazov based on smoothed data D
“Parent”
Least Squares 1

Note that some X-ray data analysis routines may estimate σi for you during 
data reduction. In PHA files, such estimates are recorded in the STAT_ERR
column. 

“Versions” of the χ2  Statistic

2
dχ

2
2

2

( )
,

N
i i

i i

D M

σ
−χ ≡ ∑

2
iσ

2
iσ

2[1 0.75]iD+ +

1

N

ii
D

N
=∑
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Statistical Issues

• Bias
• Goodness of Fit
• Background Subtraction
• Rebinning
• Errors
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Statistical Issues: Bias 

• If one samples a large number of datasets from a given model        and 
then fits this same model to these datasets (while letting  θ   vary), one 
will build up sampling distributions for each parameter θ k . 

• An estimator (e.g., χ2) is biased if the mean of these distributions (E[θ k]) 
differs from the true values θ k ,o. 

• The Poisson likelihood is an unbiased estimator. 
• The χ2 statistic can be biased, depending upon the choice of σ : 

– Using the Sherpa  utility FAKEIT, we simulated 500 datasets from a constant 
model with amplitude 100 counts. 

– We then fit each dataset with a constant model, recording the inferred 
amplitude. 

Statistic    Mean Amplitude
Gehrels                 99.05
Data Variance   99.02
Model Variance 100.47
“Parent”            99.94
Primini   99.94
Cash   99.98

( )ˆM θ
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A demonstration of bias.  Five hundred datasets are sampled from a constant model with amplitude 100 and 
then are fit with the same constant amplitude model, using  χ2  with data variance. The mean of the 
distribution of fit amplitude values is not 100, as it would be if the statistic were an unbiased estimator. 
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•  Th e χ2 goodness-of-fit is derived by computing

  This can be computed numerically using, e.g., the GAMMQ routine of 
Numerical Recipes. 

• A typical criterion for rejecting a model is                  (the “95% 
criterion”). However, using this criterion blindly is not recommended! 

• A quick’n’dirty approach to building intuition about how well your 
model fits the data is to use the reduced χ2, i.e., 

– A “good” fit has 

– If                   the fit is “too good” -- which means (1) the errorbars are 
too large, (2)        is not sampled from the 2 distribution, and/or (3) the 
data have been fudged.

  The reduced χ2 should never be used in any mathematical computation 
if you are using it, you are probably doing something wrong! 

Statistical Issues: Goodness-of-Fit

( )

2 2
obs

2

2
obs

2 2

12 2
2 2

2

1

2

( | )

.
2

N P

N P

d p N P

d e

α
∞

χ χ

− − χ
∞ −

− χΓ

= χ χ −

 χ= χ  
 

∫

∫

2 0.05α
χ

<

2 2
obs,r obs /( ) :N Pχ = χ −

2
obs,r 1.χ ≈

2
obs,r 0χ →

2
obsχ
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Figu re 7 : Com p ar ison  of the d is t r ibu t ions  of 500 sam p led  valu es  of χ2  versu s  the exp ected  d is t r ibu t ion  for  99  
d egrees  of freed om . Top : χ2 with  Geh rels  var iance. Bot tom : χ2 with  d ata  var iance. 
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• A typical “dataset” may contain multiple spectra, one containing source 
and “background” counts, and one or more others containing only 
“background” counts. 

– The “background” may contain cosmic and particle contributions, etc., but 
we'll ignore this complication and drop the quote marks. 

• If possible, one should model background data: 
⇒ Simultaneously fit a background model MB to the background dataset(s) Bj , 

and a source plus back- ground model MS +  MB to the raw dataset D. 
⇒ The background model parameters must have the same values in both fits, 

i.e., do not fit the background data first, separately. 
⇒ Maximize Lbx LS+ B or minimize

• However, many X-ray astronomers continue to subtract the background 
data from the raw data: 

n is the number of background datasets, t is the observation time, and  
is the “backscale” (given by the BACKSCAL header keyword value in a 
PHA  file), typically defined as the ratio of data extraction area to total 
detector area. 

Statistical Issues: Background Subtraction

2 2
B S+B .χ + χ

1 ,'

1

.
j j

n
j i j

i i D D n
j B B

B
D D t

t
β

β
=

=

∑

∑

 
= −  

  
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Figu re 8 : Top: Bes t - fit  of a  p ower- law t im es  galact ic absorp t ion  m od el to  th e sou rce sp ect ru m  of su p ernova 
rem nan t  G21.5- 0 .9 . Bottom :  Bes t - fit  of a sep arate p ower- law t im es galact ic absorp t ion  m od el to  the 
backgrou nd  sp ect ru m  ext racted  for  th e sam e sou rce. 
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Statistical Issues: Background Subtraction

• Why subtract the background? 
– It may be difficult to select an appropriate model shape for the 

background. 
– Analysis proceeds faster, since background datasets are not fit. 
– “It won't make any difference to the final results.”

• Why not subtract the background? 
– The data    are not Poisson-distributed -- one cannot fit them 

with the Poisson likelihood. (Variances are estimated via error 
propagation: 

– It may well make a difference to the final results: 
∗ Subtraction reduces the amount of statistical information in the 

analysis quantitative accuracy is thus reduced. 
∗ Fluctuations can have an adverse effect, in, e.g., line detection. 

'
iD

1
1 1

2

1

2

'
,

1
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[ ]
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Statistical Issues: Rebinning 

• Rebinning data invariably leads to a loss of statistical 
information! 

• Rebinning is not necessary if one uses the Poisson likelihood to 
make statistical inferences. 

• However, the rebinning of data may be necessary to use χ2 statistics, 
if the number of counts in any bin is <=  5. In X-ray astronomy, 
rebinning (or grouping) of data may be accomplished with: 

– grppha, an FTOOLS routine; or 

– dmgroup, a CIAO Data Model Library routine. 

One common criterion is to sum the data in adjacent bins until the 
sum equals five (or more). 

Caveat: always estimate the errors in rebinned spectra using the 
new data     in each new bin (since these data are still Poisson-
distributed), rather than propagating the errors in each old bin. 

⇒For example, if three bins with numbers of counts  1, 3, and 1 are 
grouped to make one bin with 5 counts, one should estimate  V[D’=  5] 
an d  n ot  V[D’] =  V[D1 =  1 ] +  V[D2  =  3] +  V [D3 =  1]. The propagated errors 
may overestimate the true errors. 

'
iD
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Statistical Issues: Systematic Errors 

• In X-ray astronomy, one usually speaks of two types of errors: 
statistical errors, and systematic errors. 

• Systematic errors are uncertainties in instrumental calibration. For 
instance: 
– Assume a  spectrum observed for time t  with a telescope with 

perfect resolution and an effective area Ai . Furthermore, assume 
that the uncertainty in Ai is σA ,i . 

– Neglecting data sampling, in bin i, the expected number of 
counts is D i =  Dγ ,i(∆E )tA i.

– We estimate the uncertainty in Di as

 σDi =  Dγ ,i(∆E )tσA ,I =  Dγ ,i(∆E )tf iA i =  f iD i

• The systematic error fiDi ; in PHA files, the quantity fi is recorded in 
the SYS_ERR column. 

• Systematic errors are added in quadrature with statistical errors; for 
instance, if one uses        to assess the quality of fit, then  

• To use information about systematic errors in a Poisson likelihood 
fit, one must incorporate this information into the model, as 
opposed to simply adjusting the estimated error for each datum. 

2
dχ 2( ) .i i i iD f Dσ = +
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Summary

• Motivation: why do we need statistics?
• Probabilities/Distributions
• Poisson Likelihood
• Parameter Estimation
• Statistical Issues
• Statistical Tests – still to come....
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Conclusions

Statistics is the main tool for any astronomer who 
need to do data analysis and need to decide about 
the physics presented in the observations.
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Properties of Distributions

The beginning X-ray astronomer only needs to be familiar with four properties of 
distributions: the mean, mode, variance, and standard deviation, or “error.”
•  Mean:   μ =  E[X ] =   ∫dX X p (X)

•  Mode:  m ax[p (X)] 

•  Variance: 
•  Error:
Note that if the distribution is Gaussian, then σ is indeed the Gaussian  σ (hence the 
notation).
 
If two random variables are to be jointly considered, then the sampling distribution is 
two-dimensional, with shape locally described by the covariance matrix: 

                                                        where    

The related correlation coefficient is  

The correlation coefficient can range from -1 to 1. 
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