
Use of XSPEC for XRISM

Keith Arnaud

xspec12@athena.gsfc.nasa.gov
https://www.facebook.com/groups/320119452570

High Energy Astrophysics Science Archive Research Center

University of Maryland College Park,
NASA’s Goddard Space Flight Center,

and CRESST

Title: "Exploring the Universe with xspec and XRISM"

I. Introduction

Brief overview of X-ray spectroscopy and its importance in understanding the Universe

Introduction to xspec and XRISM

II. X-ray Spectroscopy

Explanation of X-ray spectroscopy and how it works

Importance of X-ray spectroscopy in studying the properties of astrophysical objects

Applications of X-ray spectroscopy in astrophysics research

III. xspec

Introduction to xspec and its history

Overview of xspec's features and capabilities

How xspec is used in astrophysics research

Examples of xspec analysis in recent astrophysics research

IV. XRISM

Introduction to XRISM and its mission

Overview of XRISM's capabilities and instrumentation

Explanation of how XRISM will use X-ray spectroscopy to study the Universe

Potential discoveries and contributions of XRISM to astrophysics research

V. Future of X-ray Spectroscopy

Discussion of future advancements in X-ray spectroscopy and their potential impact on astrophysics research

Importance of continued development and utilization of X-ray spectroscopy in studying the Universe

VI. Conclusion

Recap of the importance of X-ray spectroscopy and the role of xspec and XRISM in astrophysics research

Call to action for continued support and funding for X-ray spectroscopy research and technology development.

General comments

The Resolve response matrix

Simultaneous fitting of Resolve and Xtend

Define
Model

Calculate
Model

Change
model

parameters

Multiply by
detector
response

Compare
to data

Has fit
converged?

Good
Fit?

No

Calculate
confidence

regions

Yes

Yes

No

Scientist Program

Define
Model
with any
priors

Calculate
Model

Generate
model

parameters

Multiply by
detector
response

Compare
to data

End chain?
Calculate
posterior

distribution
Yes

No

Scientist Program

XSPEC v12.13 and PyXspec v2.1.1 were released with HEAsoft 6.31.1 in 12/22.

We try to do one new XSPEC release per year.

Patches are available at https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/bugs.html

Additional models sent to us are made available and if requested are added as
standard models in the next release. See
https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/newmodels.html

Note that HEAsoft now includes gsl so any models can use these routines.

Please do not use Numerical Recipes routines in models since these are copyrighted
and are not supposed to be distributed.

If you are not already a member I recommend joining the xspec Facebook group
which now has ~1,570 members (https://www.facebook.com/groups/320119452570/).

The standard XSPEC interface is written in Tcl and is difficult to use for
complex scripts. PyXspec is a Python package which provides a way of running
XSPEC from the Python interface. Only one XSPEC process can be run from a
Python session.

Internal XSPEC data can then be used in other Python packages. For instance
plotting can be done using matplotlib.

https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/python/html

https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/morepython.html

https://github.com/HEASARC/PyXspec-Jupyter-notebooks

https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/morepython.html

HEASP and HEASPTOOLS

heasp is a C++ library of routines to manipulate spectra, responses, table models.

A python module called heasp provides an interface to these C++ routines.

(https://heasarc.gsfc.nasa.gov/docs/software/lheasoft/headas/heasp/heasp_guide.html)

heasptools are a set of ftools built on top of heasp and will replace many old tools in caltools
and heasarc.

For instance, ftrbnpha replaces rbnpha. ftgrouppha is a replacement for grppha with many
more grouping options including optimal binning.

(https://heasarc.gsfc.nasa.gov/lheasoft/ftools/headas/heasptools.html)

from heasp import *
import xspec as xsp
import numpy as np

responseName = “input.rsp”
inputRSP = rmf(responseName)

energyBins needs to be the standard internal xspec energy array
numEnergies = inputRSP.NumberEnergyBins() + 1
energies = np.empty((numEnergies))
energies[0] = inputRSP.getLowEnergyElement(0)
for j in range(1,numEnergies): energies[j] = inputRSP.getHighEnergyElement(j-1)

set up parameters as a list
params = [1.7]
and output flux as a list
fluxlist = []
xsp.callModelFunction(“powerlaw”,energies.tolist(), params, fluxlist)
flux = np.array(fluxlist)
phaValues = inputRSP.multiplyByModel(flux)

channel = np.arange(phaValues.size).astype(np.int32)
exposure = 10000.0
phaValues *= exposure

phaOut = pha()
phaOut.setFirstChannel(0)
phaOut.setPha(phaValues)
phaOut.setChannel(channel)
phaOut.setExposure(exposure)
phaOut.setDetChans(phaValues.size)
phaOut.setPoisserr(True)
phaOut.setDatatype(“COUNT”)
phaOut.setSpectrumType(“TOTAL”)
phaOut.setResponseFile(responseName)
phaOut.setTelescope(inputRSP.getTelescope())
phaOut.setInstrument(inputRSP.getInstrument())
phaOut.setFilter(inputRSP.getFilter())

status = phaOut.write(“output.pha”)

XSPEC speed

XSPEC speed is dominated by two steps: calculating the model and
multiplying the model by the response matrix.

Model calculation is usually O(NE) or O(NElogNE) where NE is the number of
energy bins.

Response matrix calculation is O(NR) where NR is the number of non-zero
elements in the matrix.

XRISM/Resolve has 60,000 energy bins and 60,000 channels. Since the response
matrix is triangular it is >7 Gb in size.

Calculate model
on 60,000
energy bins

Bin up to 3,750
energy bins

Combining high res and low res data:
A Toy Case

High resolution detector with FWHM 5 eV

Low resolution detector with FWHM 100 eV and 10x the
effective area of high resolution detector

Single gaussian line and power-law background.

Look at cases of 30 eV sigma line and 5 eV sigma line.

30 eV sigma line

5 eV sigma line

5 eV sigma line

5 eV sigma line

Combining high res and low res data:
What could possibly go wrong?

If the model is correct the greater number of counts in the low res
data could drive the fit to a local minimum which doesn’t work
for the high res data. - Probably best to fit the high res data
first.

If the model is incorrect then the fit may end up in a global
minimum which doesn’t work for the high res data. Find a better
model.

If the low res data has calibration problems then the fit may not
work for the high res data and the parameters may be wrong.

30 eV sigma line

5 eV sigma line

5 eV sigma line

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

