

XRISM/Resolve data (a whirlwind tour)

F. Scott Porter XRISM/Resolve Instrument Scientist NASA/GSFC

February 3, 2025

NASA/Goddard Space Flight Center

An x-ray calorimeter is a thermal measurement of the photon energy

- High resolution non-dispersive spectrometer
- linear detectors: large bandpass

• Must operate at **low temperatures** for high resolution

$$E_{photon} = \int C(T) dT \approx C \cdot \Delta T$$

Resolve detector system

X-ray signal path

Observer data

Resolve - High Resolution Soft X-Ray Spectrometer

Pulse height processing and event grading

Want to measure x-ray energy

- Use all available information
 - Optimal estimator
 - Signal/noise in all freq bins
- What do you do with pile-up?

Two kinds of pileup

- Only effects the pulse processing
- Effects the pulse thermally

Event grades:

- High Resolution → full record
- Mid Resolution $\rightarrow \frac{1}{4}$ record
- Low Resolution → Simple PH
- Secondaries (only mid and low)

Full event grading matrix for Resolve

Ishisaki et al. (2018)

Branching ratio

Performance for different grades

- Both Hp and Mp must meet energy resolution requirement of 7eV
- Low res and secondaries are degraded

Example from in-flight data:

Calibration

- Put physical units on instrument data
- Parameterize model of the instrument response
- Correct instrument non-linearities
- Examples:
 - Line spread function and redistribution (inputs to rmf)
 - Spectrometer Energy Scale and reconstruction
 - Throughput (i.e. effective area)

Spectral redistribution

- · Core line shape: dominated by detector intrinsic noise and system noise
- Broadband redistribution: dominated by detector material properties.
- To measure: Monochrometers, modeled fluorescent lines, EBIT measurements
- Different RMFs containing different amounts of this detail

Deviates from a gaussian instrumental function at the 1% level

Core line shape across the band pass

- Energy resolution scales with Energy
- Some systematic differences between monochrometer and fluorescent measurements: incomplete line shape knowledge

Energy Scale measurement

- One of 3 sets of measurements to span bandpass
- Precision dominated by fluorescent line models

EBIT results for Neon

Energy scale error = +0.41 eV, Energy resolution = 3.83 eV (composite 35 pixels)

Energy scales (cont'd)

- Energy Scale is non-linear and varies with temperature
- Need to reconstruct vs time on-orbit using a fiducial

Energy scale reconstruction

Resolve - High Resolution Soft X-Ray Spectrometer

XRISM has three fiducials to track detector gain vs time:

- Calibration pixel with internal 55-Fe source (5.9 keV), always on
- Modulated x-ray source: flood source for all pixels, but well defined time
- 55-Fe source on the filter wheel which can be rotated into the FOV

During Gate valve closed observations → FW 55-Fe

With the Gate Valve closed, each modulated x-ray source only illuminates $\frac{1}{2}$ the array \rightarrow gain tracking using the FW 55-Fe source during eclipse

Gain tracking during 7 day trial observation of the Centaurus Cluster FW rotated to fiducials every earth eclipse for ~30 minutes

Optimized fiducials

- Sufficient to reconstruct the gain
- Minimizes filter wheel motion

Non-linear gain reconstruction

- Assume all gain errors can be parameterized as temperature
- Synthesize new gain curve for each event

<u>Soft X-Ray Spectromete</u>

Reconstructed energy scale

Reconstructed 55-Fe spectrum during fiducials Composite resolution of 35 pixels: 4.47 eV. Energy scale error = 0.00 eV at 6 keV

Reconstructed cal pixel gain

- Reconstruct cal pixel gain only using same sparse sampling as main array
- Compare during fiducials to between fiducials

Events from just the fiducial intervals: Resolution = 4.46 eV, line shift: -0.05 eV Events from observation but not the fiducial intervals: Resolution = 4.43 eV, line shift: -0.02 eV

Gain reconstruction reports

- SDC provides energy scale (gain) reconstruction reports
 - Contains the products we just discussed
- Reviewed by the instrument team for every observation
- Will be discussed by Isabella later this morning

Gain Recovery Report, OBSID 201107010 (WR140) Generated 12/05/2024 Date observed: 2024-11-22T20:21:02 Pre-processing version: 005_003.20Jun2024_Build8.014 Processing version: 03.00.013.010 Using report generator gain_report_generator_v8.py

Recommended uncertainties

Resolve - High Resolution Soft X-Ray Spectrometer

- Calibration team working hard to reduce systematics
- Right now we have very good energy scale fiducials from 5.4-9.0 keV
- Pinning the low energies is difficult with the GV closed
- There are no simple energy scale fiducials at high energies
- Recommended energy scale uncertainties (1 sigma):
 - 5.4-9.0 keV: 0.3 eV
 - Add cal pixel reconstruction error for each observation in quadrature
 - < 5.4 keV: 1 eV, constrained by Si Ka instrumental line
 - Above 9.0 keV: 2 eV, conservatively
- Recommended core LSF uncertainty
 - Energy dependent
 - 0.13 eV FWHM at 6 keV

Energy scale uncertainty

From the calibration report for each observation

Anti-coincidence detector

- · Low voltage ionization detector behind the main detector array
- Dual independent readouts for redundancy
- Energy scale is very linear
- Vetos minimum ionizing charged particles

Anti-coincidence detector

Resolve non-xray background

RisM Resolve - High Resolution Soft X-Ray Spectrometer

- Non x-ray background (NXB) is very low
- Becoming better characterized with time
- Caroline will discuss extensively tomorrow

Summary

- Resolve is working very well on-orbit
- Tracking two pixels (24,31) with a small increase in excess noise
 - Likely due to expected radiation damage to cryogenic amplifiers
 - No effect on performance
- Tracking gain shifts on some pixels
 - Pixel 27, not currently useable
 - Observed on a handful of others
 - Almost always during ADR recycle → well sampled reconstruction
 - Handful of cases observed at other times
 - Instrument team is monitoring
 - Pl is notified
- Inflight calibration is on-going
 - Midres calibration
 - Improved energy scale systematics
 - NXB