Atomic Physics, Diagnostics and Uncertainties

Tim Kallman NASA/GSFC

Timothy.r.Kallman@nasa.gov

Outline

- Why spectra?
 - Atomic physics is common to all
 - Physical processes in X-ray gas
 - Models are needed which take into account all of them
 - What are the standard physical assumptions,
 - Scope of the problem: how big
 - Atomic data sources
- What are the most widely used codes
- How do we make sure we are getting the right answers: potential pitfalls,
 - Incompleteness
 - Perseus
 - Missing physics
 - X1817
- How do we make sure we are getting the right answers: checking,
 - Code comparisons
 - Experiments
 - Including errors
- Unknown unknowns: energetic particles, non-maxwellian velocity distributions, time variability

N132D

Supernova remnant with rich array of emission lines

NGC1068

AGN with rich array of emission lines

NGC3783

AGN with rich array of absorption lines

Cyg X-3

Emission and absorption from source with strong continuum from compact source

Perseus Cluster

Iron K line emission (Fe XXV) from hot gas

Atomic Physics Primer: Hydrogenic energy levels: Bohr atom

 $E_n = -\frac{Z^2}{n^2} \times 1$ Ry Energy levels are described by principle quantum number n=0, 1, 2,...

Atomic Physics Primer: Multi-electron atoms

As electrons are added, they fill the levels, similar to hydrogenic

	1s	2s	2p	3s	3p	3d	Configuration	
n	1	2		3				
1	0	0	1	0	1	2		
1	1						1s	
2	2	í				1	1s ²	
3	2	1					1s ² 2s	
4	2	2				1	1s ² 2s ²	
5	2	2	1				1s ² 2s ² 2p	
6	2	2	2				1s ² 2s ² 2p ²	
7	2	2	3				1s ² 2s ² 2p ³	
10	2	2	6				1s ² 2s ² 2p ⁶	
11	2	2	6	1		1	1s ² 2s ² 2p ⁶ 3s	
18	2	2	6	2	6		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
19	2	2	6	2	6	1	1s22s22p63s23p63d	

Atomic Physics Primer: Angular momentum and spin

 Also important is the total spin and orbital angular momenta, denoted S and L. These are vector sums of the individual electrons.

Selection rules (initial/final states of permitted transition) $\triangle l = \pm 1$, $\triangle m = 0, \pm 1, \Delta S = 0$, $\triangle L = \pm 1$, $\triangle J = 0, \pm 1$ (except J=0 to J=0)

What happens in X-ray gas?

1) Photoionization: $\sigma \sim \pi a_0^2 Z^{-2}$

Need photon energy ~1RyZ² ~ 0.8 keV eg. for oxygen

- 2) Inelastic Electron-ion collisions: $\sigma \sim \pi a_0^2 Z^{-2}$ Need electron energy kT ~1RyZ²~10⁷K eg. for oxygen
- 3) Recombination: comparable cross section, no threshold
- 4) charge transfer: $\sigma \sim \pi a_0^2 \rightarrow$ large for low ionization projectiles

 \rightarrow which ones win depends on conditions: T, radiation field, neutrals

Modeling X-ray plasmas involves consideration of all of these processes

Process	inverse	Heating/cooling	Emission/absorption
Photoionization	Radiative Recombination	У	У
Photoexcitation	Radiative decay		У
Autoionization	Dielectronic recombination	У	
Electron impact excitation	Electron impact deexcitation	У	
Electron impact ionization	3 body recombination	У	
Charge transfer (ionization)	Charge transfer (recombination)	У	
Bremsstrahlung	Free-free absorption	У	У
Compton scattering	Inverse Compton	У	У

- Physically accurate models need to calculate the effects of *all* these processes.
- All are coupled thru temperature

Most models employ a standard set of physical assumptions

- Maxwellian electron velocities, single temperature
- At most marginally optically thick
- Time steady (or not)
- Simple geometry: slab or sphere
- ~Cosmic element abundances
- Weak radiation field \rightarrow neglect stimulated processes

Even with these simplifications, modeling spectra is challenging.

- ~30 elements
- ~465 ions
- 10-100 levels per ion \rightarrow ~10⁵ levels
- 100-1000 lines per ion \rightarrow ~10⁶ lines
- Statistical equilibrium: rate in=rate out
 - \rightarrow A large coupled linear system ~10⁵ equations $\frac{dn_i}{dt} = \Sigma_j \left(n_j R_{ji}(T, F, n..) - n_i R_{ij}(T, F, n...) \right)$
- Plus radiative equilibrium in some cases

$$\frac{d}{dt}\left(\frac{3}{2}nkT\right) = H(T, F, n..) - C(T, F, n..)$$

- Plus radiative transfer
- → atomic database contains ~(465)x(100)x(100) real numbers~8x10⁸ ~3Gbytes ascii
- Where to get all this data? How to check it? Is it accurate enough?

Modeling codes

- Photoionization equilibrium (xstar/warmabs, cloudy, pion)
- Coronal equilibrium (apec, spex, chianti)
- Non-equilibrium ionization (apec, spex)
- Charge exchange (apec, spex)
- Time dependent photoionization (pion, xstar)

Some codes are directly callable from xspec or spex (`analytic' models) Others use tables: mtables or atables

Where do rates and other quantities needed for modeling come from?

- Atomic calculations are the only practical source for most quantities
- Approximations:
 - Configuration interaction
 - Hartree-fock (MCHF)
 - Dirac or dirac-fock: (MCDF)
 - Breit-pauli
 - Multi-body perturbation theory (MBPT)
- Scattering packages:
 - Distorted wave
 - R-matrix
- Structure packages:
 - Fac/hullac
 - autostructure

$$H = \sum_{i=1}^{N} \left[-\nabla_i^2 - \frac{2Z}{r_i} \right] + \sum_{j \neq i} \frac{2}{r_{ij}}.$$

Experimental measurements are potentially the most

accurate

Line energies can be used to benchmark calculations

Atomic data accuracy: rules of thumb

• Calculations:

- Rates/cross sections: 10-20%
- Energy levels: ~1%
- mbpt claims ~0.1%
- Measurements
 - Energy levels: 0.1% or better
 - Rates/Cross sections: ~1% (?)

Atomic data Completeness: Hitomi spectrum of the Perseus cluster

- Model fit to Hitomi spectrum of Perseus
- Shows expected He-like lines

 Log plot shows weaker lines from Li-like Fe contributing to fit

6600

6620

6640

6660

energy (eV)

6680

6700

Atomic data Completeness: the importance of damping on X-ray lines

- Optical and uv lines generally involve excitation from the valence shell
 - \rightarrow decay is the opposite of excitation,
 - upper level lifetime scales $\sim z^{-4}$ or E $^{-2}$
- X-ray lines often involve inner shells
 - Decay can occur by autoionization
 - Decay rate scales ~z⁰
 - \rightarrow at Z<30 autoionization can be dominant
- If so, line shape has different character
 - This is called Auger damping or Nonradiative damping.
 - Correct line profile is Voigt profile: Gaussian core, Lorentzian wings.
 - The damping parameter can be much larger than for optical/UV lines

Atomic data completeness: lifetimes of inner shell vacancy levels

- Lifetime of excited levels depend on sum over many possible decay channels
- These include radiative and nonradiative channels
- Non-radiative channels
 - Have large rates for many inner shell transitions
 - Do not obey dipole selection rules
 - Are easy to ignore when calculating structure
- Including these channels is crucial to getting accurate lifetimes and fluorescence yields.

Z	N	Level	$\frac{\text{HFR1}}{(\text{s}^{-1})}$	AS1 (s ⁻¹)	HULLAC ^a (s ⁻¹)
14	5	$1s2s^22p^2 \ ^2P_{1/2}$	1.63+14	1.67+14	7.58+13
	6	$1s2s^22p^3 \ {}^3S_1^o$	2.05 + 14	2.23+14	1.16+14

(Palmeri et al. 2008)

Atomic data completeness: The photoionization cross section of O I near the K edge

(Mclaughlin and Kirby 1998)

- Early calculations showed resonances near K edge
- Kα >> Kβ

Atomic data completeness: With Chandra this edge was observed

Atomic data completeness: Similar results were found for other X-ray binary ism spectra

 \rightarrow Extra absorption appears below the edge

Atomic data completeness:

One hypothesis for the below-edge absorption is molecules

CO: edge near 542eV=22.9A

BARRUS, BLAKE, BUREK,

probable that the weak shake-up transitions are overwhelmed in this range by a potential barrier peak, which in N_2 has been shown quantitatively to reach such large relative intensity by Dehmer and Dill.¹⁶ On the other hand, the appearance of a very

AMBERS, AND PREGENZER

 $\underline{20}$

O₂: edge near 537 eV=23.1A

(Barrus et al. 1979)

Atomic data completeness: Lab spectra of some oxygen compounds also show absorption

- potential diagnostics of the molecular/solid content of the ISM?
- Essentially all spectra show molecules with column comparable to atomic

(Costantini et al. 2012)

Atomic data completeness: Does it make sense that all lines of sight have molecules?

- X-ray binary sightlines probe significant distances in the galactic plane
- Location of X-ray binary sample overlaid on HII region map (Levine et al. 2006) does not show perfect coincidence
- Expect ~10% filling factor for truly cold molecular material
- So what is going on?

30 kpc

Atomic data completeness: more recent calculations of the photoionization cross section of O I near the K edge

- Resonances near K edge
- Kα and Kβ more nearly comparable

(Gorczyca and Mclaughlin 2003)

Atomic data completeness: The photoionization cross section of O I near the K edge

(Mclaughlin and Kirby 1998)

- Early calculations showed resonances near K edge
- Kα >> Kβ

Atomic data completeness: Here is why K $\alpha \sim K\beta$:

- K shell resonances (1s-np) close to threshold can decay by an alternate channel.
- Auger decay in which the high n electron does not participate is rapid and independent of n
- This broadens the resonances and causes them to blend and smear the edge
- In such 'spectator Auger' decay the Rydberg electron does not participate in the decay
- This is important for ions with more than 3 electrons

Atomic data completeness: Experimental Demonstration of Auger damping in Ar+

(Farhat et al., 1997)

Atomic data completeness: Fit to Chandra observation of O I edge

Atomic data completeness: Fit to Chandra observation of O I edge

Atomic data completeness: The effect of Auger damping on the iron K edge

Fe XVII

Atomic data accuracy: Fe K line energies

- For neutral Fe, experimental measurements are accurate to $\Delta\epsilon/\epsilon$ ~1.e-4
- For ions near neutral, calculations are all that is available
 - Likely accuracy is $\Delta \varepsilon / \varepsilon \sim 1e-2$.
 - Corresponds to 300 km/s
 - But they agree with experiment for neutral to within 1.e-4

Yamaguchi et al. 2012

Atomic data Accuracy: the HETG spectrum of NGC 3783

Best fit, 5 components each with ~2000 known lines C_{stat}=47254.0/41698=1.13

Why don't we get a perfect fit?

Additional absorption by known lines with added ad hoc additional optical depth C_{stat}=45250.2/41251=1.09

→ It appears that errors in absorption line strengths is not the primary reason for $C_{\text{stat}}/v>1$

2023

eta

allhausen

m

(Psaradaki et al. 2020)

Atomic data accuracy: Comparing codes is a useful check

- Recent comparison of predictions at the OI K edge shows agreement on gross features.
- Location of individual resonances differs by $\Delta e/e \sim 0.001$ in some cases
- Consistent with expectation but not adequate for high s/n work.

Atomic data accuracy: Comparing codes is a useful check

- Comparison of temperature produced by various photoionization codes
- Shows very good agreement for this particular problem.

(Mehdipour et al. 2016)

Atomic data accuracy: Comparing codes is a useful check

Hitomi Perseus spectrum:

- Various code predictions are compared
- Final spectrum shows good consistency
- Residuals from different codes show larger differences, particularly in the Fe XXIV region

Atomic data accuracy: Comparing codes is a useful check

Hitomi Perseus spectrum:

- Various sources for electron impact collisional excitation are compared
- Strongest transitions show good consistency
- Forbidden transitions are less secure
- Lower value for 1s2-2s2p(³S₁) produces models which fit data better

(Hitomi et al. 2018)

Atomic data accuracy: Experimental validation of results

week ending 18 AUGUST 2017

- Code results (xstar)

 have been compared
 with experiment which
 produces a
 photoionized plasma in
 the lab
- Pure Si at log(ξ)~2
- Qualitative agreement is found for absorption spectrum

G. P. Loisel,¹ J. E. Bailey,¹ D. A. Liedahl,² C. J. Fontes,³ T. R. Kallman,⁴ T. Nagayama,¹ S. B. Hansen,¹ G. A. Rochau,¹ R. C. Mancini,⁵ and R. W. Lee⁶

Atomic data accuracy: Experimental validation of results

week ending 18 AUGUST 2013

- Code results (xstar) have been compared with experiment which produces a photoionized plasma in the lab
- Pure Si at log(ξ)~2
- Qualitative agreement is found for absorption spectrum
- Less good fit for emission → radiative transfer effects?

G. P. Loisel,¹ J. E. Bailey,¹ D. A. Liedahl,² C. J. Fontes,³ T. R. Kallman,⁴ T. Nagayama,¹ S. B. Hansen,¹ G. A. Rochau,¹ R. C. Mancini,⁵ and R. W. Lee⁶

Atomic data accuracy: More about atomic data

- Newer does not necessarily imply more accurate
- Many energies depend on calculations
- Careful about damping
- Neutral atoms and near-neutrals are the frontier
- Rates affecting K shells of heavies are challenging computationally

Models can be affected by `unknown unknowns':

- Departures from equilibrium (Time dependence)
- complicated (non-spherical or plane parallel) geometry
- Dynamical (i.e. departures from simple description involving turbulence and radial flow)
- Non-Maxwellian electrons
- Relativistic particles
- Extra neutrals \rightarrow charge exchange
- But this is interesting, this is where the science is...

How accurate is the assumption of ionization equilibrium?

$$t_{rec} = \frac{1}{n_e \alpha_{rec}(T)} \sim \frac{10^{11} \text{s}}{n_e}$$
$$t_{ion} = \frac{1}{\int_{\varepsilon_{Th}}^{\infty} F_{\varepsilon} \sigma_{PI}(\varepsilon) d\varepsilon/\varepsilon} \sim \frac{10^7 \text{s}}{n_e \xi}$$
$$t_{decay} = \frac{1}{A_{ul}} \sim 10^{-10} \text{s}$$

- Processes which occur on timescales shorter than these will drive the gas out of equilibrium
- Examples include:
 - Changes in ionizing flux
 - Changes in gas density (eg. Due to gas motions)

Summary

- Models are necessary for analyzing high resolution X-ray spectra
- Modeling requires large database of atomic rate data
- And relatively simple assumptions
- Various modeling packages exist
- Care is needed when interpreting model results, particularly when discovering something new

Resources

- 'Astrophysics of Gaseous Nebulae' Osterbrock and Ferland
- A. K. Pradhan & S. N. Nahar, "Atomic Astrophysics and Spectroscpy", Cambridge University Press (2011)
- http://heasarc.gsfc.nasa.gov/xstar.html