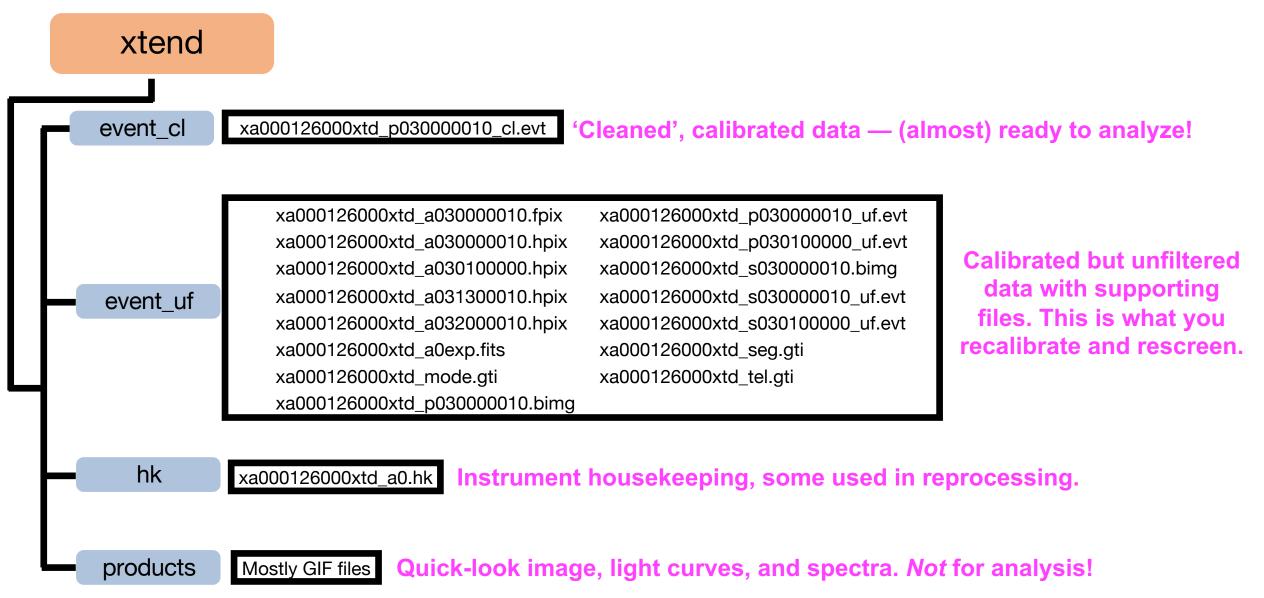


XRISM Xtend data analysis

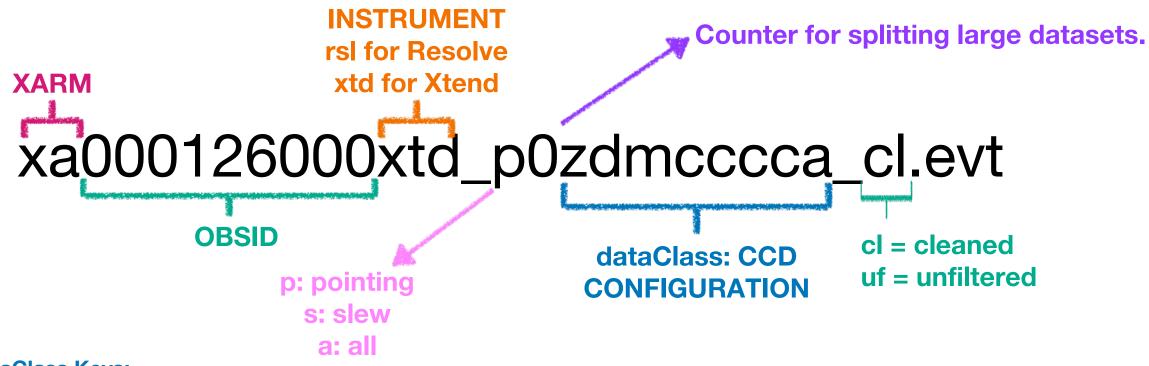

Eric Miller, Kenji Hamaguchi for the XRISM SDC and GOF

Overall data directory structure (refresher)

000126000 Top folder named after observation ID resolve auxil log xtend xa000126000_errlog.html xa000126000.att Cleaned event cl event_cl xa000126000 flinfo.html xa000126000.cat event lists xa000126000_hdpage.html xa000126000.com xa000126000 index.html xa000126000.ehk xa000126000_job.par xa000126000.mkf xa000126000 joblog.html Unfiltered xa000126000.orb event uf event_uf xa000126000_lv1.par event lists xa000126000.tim xa000126000 fff.cat Look here for xa000126000_gen.gti processing errors xa000126000gen_a0.hk hk hk Housekeeping Mission, orbital, files attitude, etc. data products products **Pipeline products** XRISM Xtend data analysis

(RiS/

Xtend data directory structure


4 February 2025

XRISM Xtend data analysis

X-Ray Imaging and

Ri

XRiSM X-Ray Imaging and Spectroscopy Mission

dataClass Keys:

- **z** = placeholder always set to 3 for Xtend in-flight data
- **d** = DETNAM: 0 = CCD, 1 = CCD12, 2 = CCD34
- m = DATAMODE: 0 = WINDOW1 (full window), 1 = WINDOW2 (1/8 window), 2 = WINDOW1BURST (full window + 0.1 sec burst mode), 3 = WINDOW2BURST (1/8 window + 0.1 sec burst mode)
- **cccc** = hexadecimal encoding of on-board instrument settings (thresholds, area discrimination, ADC chains used, readout nodes used, charge injection settings, etc.)
- **a** = reserved bit, 0 for now

• There will be a separate event file for each mode:

Mode	DATAMODE	Filename	CCDs in evt list	Frame operation
Full window	WINDOW1	*xtd_p0300* *xtd_p0320* *xtd_p0310*	CCD 1-4 (all) CCD 3,4 CCD 1,2 (rare!)	4 s exposure of full CCD
1/8 window	WINDOW2	*xtd_p0311*	CCD 1,2	0.5 s exposure of 1/8 CCD
1/8 window+burst	WINDOW2BURST	*xtd_p0 <mark>313</mark> *	CCD 1,2	0.1 s exposure of 1/8 CCD with 0.4 s deadtime
Full window+burst	WINDOW1BURST	*xtd_p0312*	CCD 1,2	0.1 s exposure of full CCD with 3.9 s deadtime ('Crab' mode; only IT can use)
Erasing	N/A	*xtd_p0301*	N/A	Only in 'event_uf', do not use!

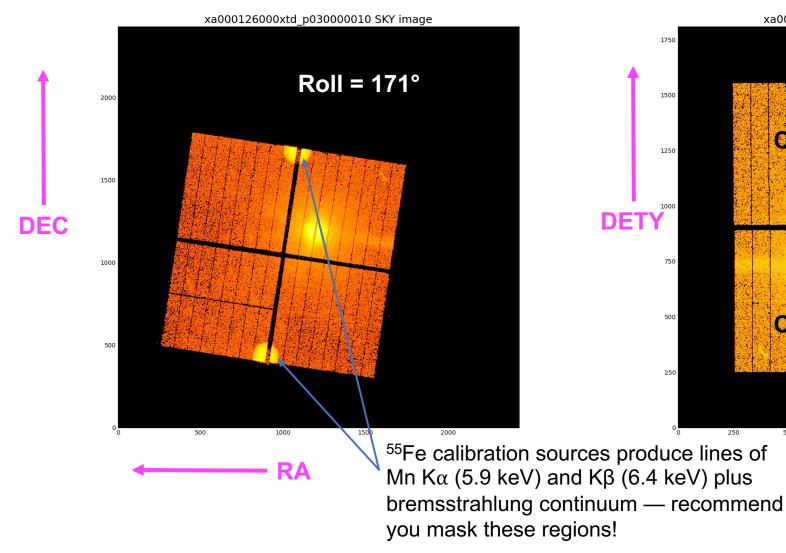
- If full window is used, there will be a single event file with all four CCDs.
 - In rare cases, CCD1,2 may be present in full window and CCD3,4 absent.
- If another mode is used, CCD1,2 will be in one event file, CCD3,4 will be in another. They must be analyzed separately.
 - CCD3,4 are *always* operated in full window mode.

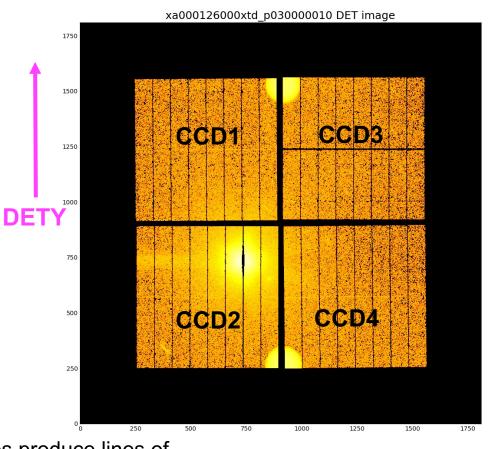
Xtend event list contents

XRiSM X-Ray Imaging and Spectroscopy Mission

HDU 1 Primary Array			
HDU 2 EVENTS HDU 3 GTI		40 cols x 3938313 rows 2 cols x 23062 rows	
flippy> ftlist xa00013 HDU 2	37000rsl_p0px1000	_cl.evt.gz c	Each row is an event, ideally from a single X-ray
Col Name 1 TIME 12 CCD_ID 13 CCD_NAME 14 SEGMENT 17 READNODE 27 DETX 28 DETY 31 X 32 Y 36 PHA 37 PI 38 GRADE 39 STATUS 40 PROC_STATUS HDU 3 Col Name	<pre>Format[Units](1D [s] 1B (0:3) 8A 1B (0:1) 1B (0:1) 1I (1:1810) 1I (1:1810) 1I (1:2430) 1I (1:2430) 1I (0:4095) 1I (0:4095) 1I 48X 32X Format[Units](</pre>	Seconds from 01 Jan 2019 00:00:00 '0: CCD1, 1: CCD2, 2: CCD3, 3: CCD4' 'CCD Name' '0: AB, 1: CD (Segment ID)' '0: A or D, 1: B or C (Readout Node)' 'Pixel X on DET-Coordinate' 'Pixel Y on DET-Coordinate' 'Pixel Y on SKY-Coordinate' 'Pixel Y on SKY-Coordinate' 'Pulse Height Amplitude Sum of 3x3 Pixels' 'Pulse Height Invariant' 'Grade Value for Pixel Hit Pattern' 'Event Flag' 'Record Bad Telemetry or Bad Values'	You can filter on • time • energy • region • quality to create • images • light curves • spectra

XRISM Xtend data analysis


Xtend Event File Columns of Interest

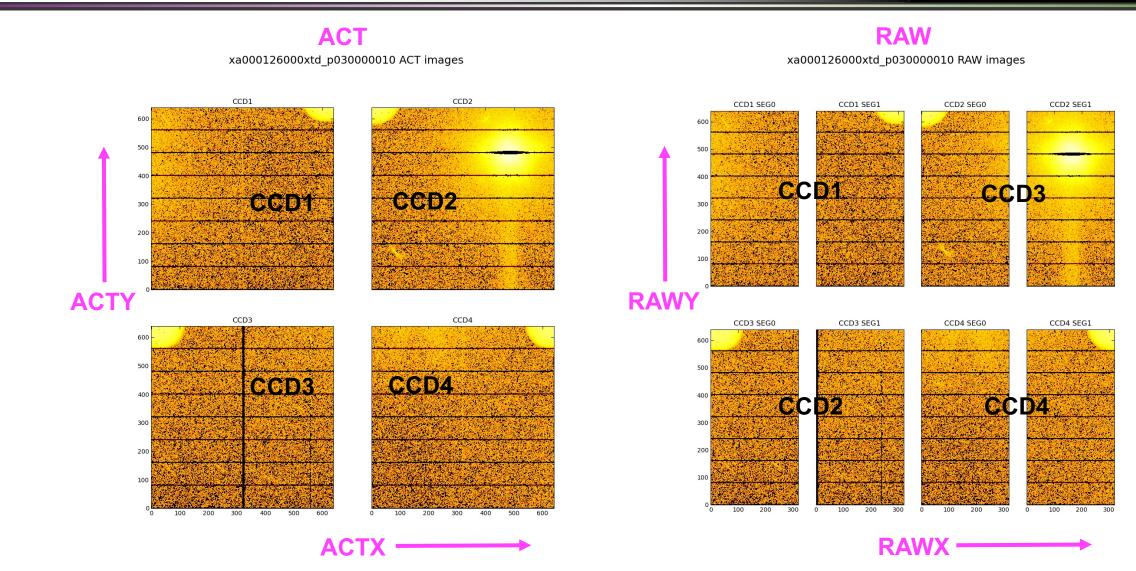

Column	Description	Range
CCID_ID	ID number of the CCD on which the event is found	0-3
	Aim-point CCD is CCD_ID = 1	
CCD_NAME	Name of the CCD on which the event is found; different numbering than CCD_ID!!!	CCD1-4
	Aim-point CCD is CCD_NAME = CCD2	
SEGMENT	One of two segments on each CCD	0-1
READNODE	One of two possible read-out nodes for each segment.	0-1
	Only one is used at a time and is expected not to change.	
RAWX,Y	Coordinates relative to readout node.	0-319,0-639
ACTX,Y	Coordinates relative to the physical CCD (look-down).	1-640,1-640
DETX,Y	Coordinates relative to the four CCDs (look-up).	1-1810
FOCX,Y	DET coordinates shifted to a common aimpoint with Resolve (look-up).	1-2430
X,Y	Coordinates relative to the spacecraft attitude; used with WCS to display RA,DEC	1-2430
GRADE	Pattern of 5x5 pixel island with signal. From ASCA, Suzaku, Hitomi.	0-11
	Good grades are 0,2,3,4,6 (singles, doubles, triples, quads)	
PI	Linearized Energy Channel	0-6000
STATUS	48 bit Event Flag — discussed later	0-1

Xtend "look-up" coordinates

Risk X-Ray Imaging and Spectroscopy Mission

X,Y (SKY)

DET


DETX ------

4 February 2025

XRISM Xtend data analysis

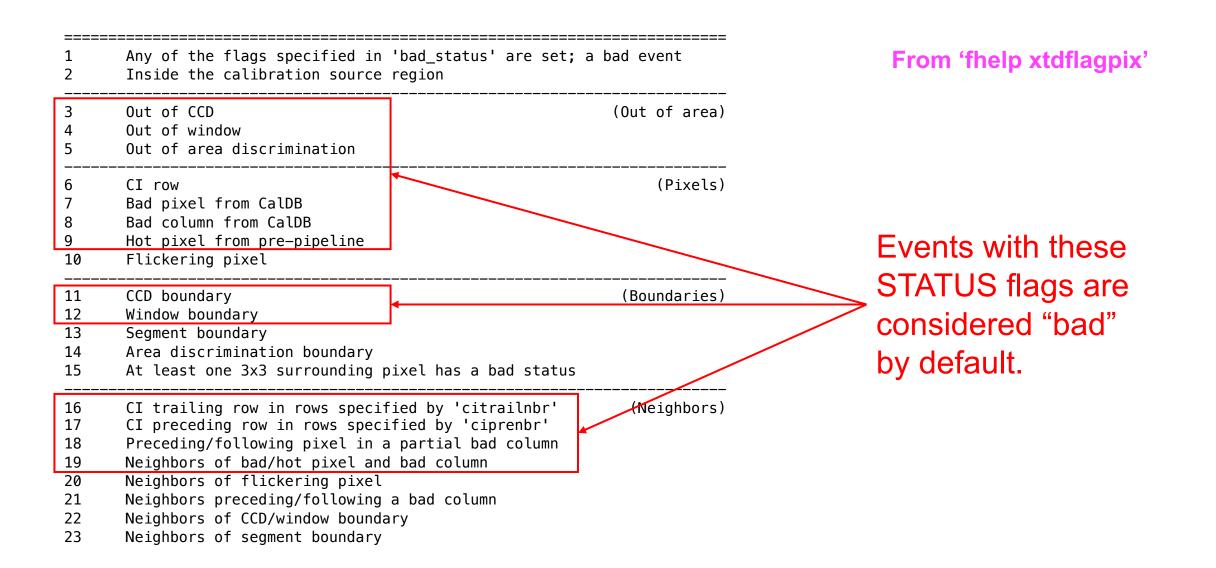
Xtend "look-down" coordinates

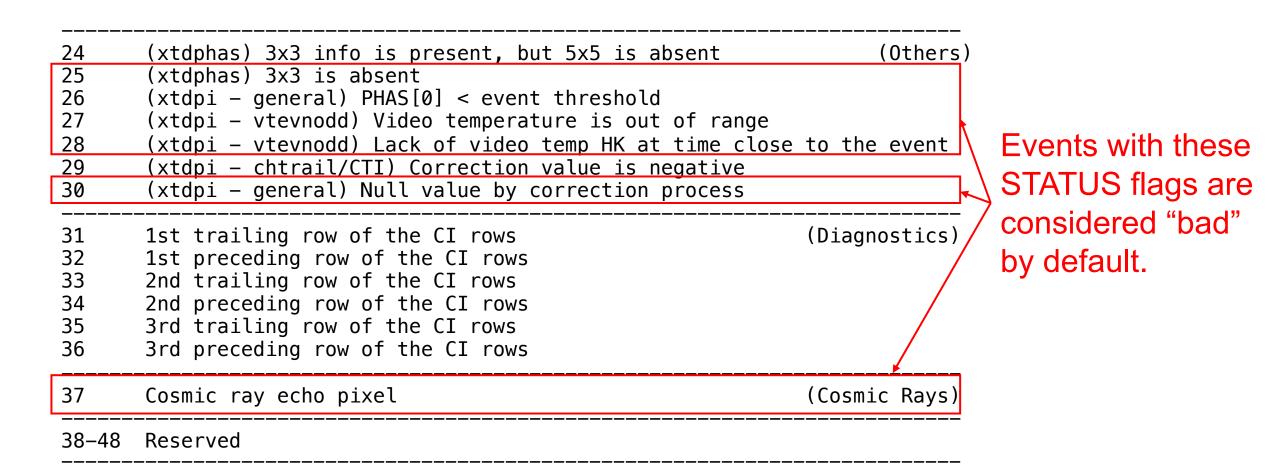
Risk X-Ray Imaging and Spectroscopy Mission

4 February 2025

XRiSM X-Ray Imaging and Spectroscopy Mission

- coordevt
 - Converts RAW coordinates to ACT, DET, FOC, SKY.
- xtdpi
 - Corrects pixel 'pulse height amplitudes' or PHAS for column-to-column gain differences, charge trailing, charge-transfer inefficiency (CTI).
 - Assigns a GRADE to each event based on the pattern of 5x5 pixels above threshold.
 - Sums pixel PHAS to calculate event PHA, depending on GRADE rules.
 - Correct PHA for overall gain to produce 'pulse invariant' PI value, in bins of 6 eV.
 - Runs TWICE to apply GRADE-dependent corrections and PI-dependent split threshold.
- xtdflagpix
 - Set data quality STATUS flags for future screening to create cleaned events.
 - Runs TWICE to set flags for flickering pixels, but that will change (more details later).


...plus a few other things. See fhelp xtdpipeline for full details.



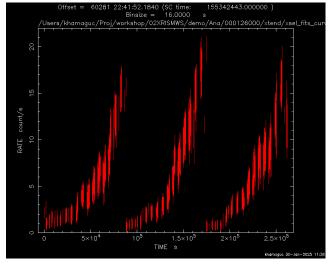
- ahgtigen creates Good Time Intervals (GTIs) based on some elements of instrument or spacecraft housekeeping (HK)
- ahscreen applies those GTIs and other event-based filtering to produce the cleaned events

GTI	Nominal instrument status — from HK (MKF)
GTI	Telemetry is not saturated
GTI	Pointing is accurate, stable — from attitude, angular distance (EHK)
GTI	Safe angle above Earth and sunlit Earth limb — from orbit (EHK)
GTI	Away from South Atlantic Anomaly — from orbit (EHK)
EVENT	GRADE == 0,2,3,4,6
EVENT	Data quality based on STATUS (see next)

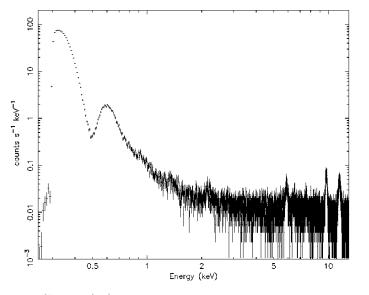
- Data can be rescreened to exclude events with different STATUS.
 - Remove calibration source regions (better to do this with a region).
 - Remove more neighboring rows of charge injection rows.
 - In general, this shouldn't be necessary.
- It is not sufficient to simply re-screen the cleaned or unfiltered event list.
 - xtdflagpix creates a 'bad pixel image' or .bimg file which is used to generate the exposure map. This needs to be updated as well.
- Recommended method for re-screening run the whole pipeline!
 - Run xapipeline with desired bad_status: xapipeline indir=000126000 outdir=000126000_reproc
- Runs steminputs=xa000126000 stemoutputs=DEFAULT
- xtdflagpix entry_stage=1 exit_stage=2 instrument=XTEND verify_input=no bad_status=<whatever you want>


Screens Default is 'bad_status=3:9,11:12,16:19,25:28,30,37' data Decode this by looking at the help for xtdflagpix or the previous slides

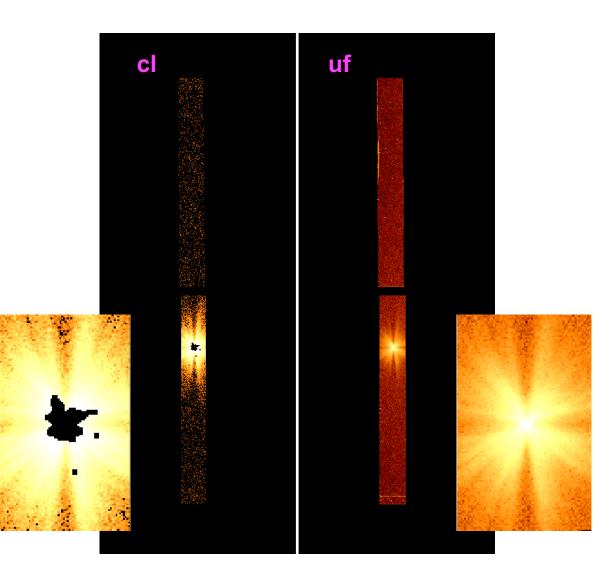
Cosmic Ray Cosmic Ray Echoi (Crosstalk) Eve


X-Ray Imaging and Spectroscopy Mission

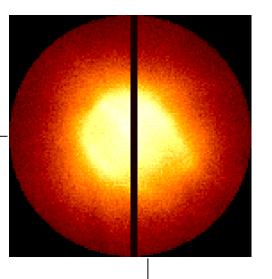
X-Ray Imaging and Spectroscopy Mis.


- Few cosmic ray echo pixels near the aim point
- Those events are seen mostly below ~0.4 keV

N132D (ObsID: 000126000) no energy filter


Cosmic Ray Echo + Sky/NX Background

Х


Cosmic Ray echo events

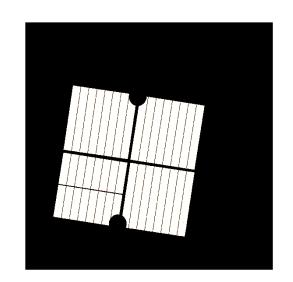
- CR echo produces persistent events in random pixels
- 'searchflickpix' thinks these are flickering pixels, but it runs amok
 - The core of the PSF for bright point source (and some extended sources) is eaten away in the cleaned data, resembling pile-up.
 - 'searchflickpix' uses an algorithm based on cleansis, with additional cleaning algorithms and enhancements.
 - There is no single set of parameters that can work for all cases (point source vs. extended source, bright vs. faint).
 - 'searchflickpix' was never intended to be used in this way. It will not be run in xtdpipeline after the next software release.
- 'searchflickpix' is still run in the pipeline, but they are *not* flagged or removed
- DO NOT USE the provided flickering pixel file (xa000126000xtd_a030000010.fpix)
- 'searchflickpix' can be used to remove them in some cases, see the Quick Start Guide
- New tool 'xtdpixclip' in next HEASOFT release
- Future tool to correct for them in the pipeline

- Region can be in RA,DEC (X,Y) or DET coordinates, set it properly
- WMAP must use DET (default); this is used to weight the RMF
- Kenji will walk through this in his demo

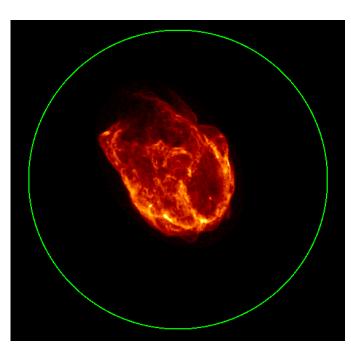
Notes: XSELECT set up for XRISM Time keyword is TIME in units of s Default timing binsize = 16.000 Setting... Image keywords = X with binning = Y keywords = DETX with binning = WMAP DETY Energy keyword with binning = = PIGetting Min and Max for Energy Column... Got min and max for PI: 0 4095

X-Ray Imaging and

= 1 = 1


- Input to xtdrmf is the extracted spectrum
 - Contains the WMAP = weighted map, which is used to weight and combine responses from small regions (similar to Resolve per-pixel response weighting)
 - Also reads Xtend configuration from the header, since response depends on the window mode
- None of the other parameters need to be altered
- This runs quickly compared to rslmkrmf

```
xtdrmf \
    infile=n132d_r2m_src.pi \
    outfile=n132d_r2m_src.rmf \
    rmfparam=CALDB \
    eminin=200. dein="2,24" nchanin="5900,500" \
    eminout=0 deout=6 nchanout=4096 \
    clobber=yes mode=hl
```



- The exposure map is required input to the ARF generator.
- The event list is used as gtifile; these times are applied to the attitude information in ehkfile to "wobble" the Xtend FoV around on the sky and build up a map of how much time each pixel looked at a particular point in the sky.
- Bad pixels, chip gaps, etc. are include via badimgfile.
- Exposure map is agnostic to the extraction region! Can use for multiples ARFs.

```
xaexpmap \
    instrume=XTEND \
    outfile="n132d_r2m_src.expo" \
    ehkfile="xa000126000.ehk" \
    gtifile="xa000126000xtd_p030000010_cl.evt" \
    badimgfile="xa000126000xtd_p030000010.bimg" \
    pixgtifile=NONE \
    outmaptype=EXPOSURE delta=20.0 numphi=1 stopsys=SKY \
    clobber=yes mode=hl
```


- Region must be in RA,DEC or DET (*not* X,Y)
- source_ra and source_dec are not used if sourcetype=IMAGE, coords are read from the image (must have WCS header info)
- Here I use a small cutout of a Chandra image. Run took 16 minutes!

```
xaarfgen \
    xrtevtfile="raytrace_n132d_src.fits" \
    outfile="n132d_r2m_src.arf" \
    source_ra=0. source_dec=0. \
    telescop=XRISM instrume=XTEND \
    emapfile="n132d_r2m_src.expo" \
    rmffile="n132d_r2m_src.rmf" \
    sourcetype=IMAGE imgfile="acis_region_img.fits" \
    regmode=RADEC regionfile="n132d_r2m_src_wcs.reg" \
    erange=".3 18. .35 8." \
    numphoton=300000 minphoton=100 seed=7 \
    clobber=yes mode=hl
```


- Xtend NXB is spatially dependent higher away from CCD readouts (high ACTY)
- regfile1 is the region to extract the NXB, regfile2 is the source extraction region
- xtdnxbgen will scale the NXB spectrum by the difference, but region coords must be same

```
xtdnxbgen ∖
     infile="xa000126000xtd_p030000010_cl.evt" ehkfile="xa000126000.ehk" \
     regmode=DET regfile="xtd_bgboxes_det.reg" regfile2="n132d_r2m_src_det.reg" \
     innxbfile="../../nxb/merged_rev2_nte_xtend_fullwin_gtifix.evt" \
     innxbehk="../../nxb/merged_reduced_fix.ehk" \
     apply_xtdtools=no \
     database=LOCAL db_location=./ \setminus
     timefirst=-1000 timelast=+1000 ∖
     SORTCOL=CORTIME sortbin="0,4,6,8,10,12,99" \setminus
     expr=TOO LONG TO SHOW \setminus
     outpifile="n132d_r2m_src_nxb.pha" ∖
     outnxbfile=NONE outnxbehk=NONE \
     clobber=yes mode=hl
```