17 January 2024, The 2nd XRISM Community Workshop, University of Maryland College Park (USA)

Analyzing (and proposing) extended sources with XRISM

François Mernier

fmernier@umd.edu

The basics of analyzing extended sources

\checkmark The emission is extended... but (often) faint!

- \checkmark If not properly accounted for, background may bias the results
- ✓ Background subtraction is good...
- ✓...Background modelling is (much) better!

The problem

(25' x 25' total equivalent)

XMM-Newton

XMM-Newlon

Chandra

Field of view (38' x 38')

$$\frac{1.7'}{38'} = 4\%$$

Field of view (38' x 38')

$$\frac{1.7'}{38'} = 4\%$$

$$\frac{1.7'}{3'} = 57\%$$
 (!)

XRISM / XLend

XRISM / Resolve

✓ "Contamination"?

✓ Need to specify what contaminates what... Moreover, it sounds quite negative (whereas substantial "contamination" is not necessarily bad... see further)

✓ "Photon leak"?

✓ Can a large PSF stricto sensu considered as a "leak"?

✓ "Mixing"?

 \checkmark More accurate term (and takes multi-directionality into account) $\overline{\checkmark}$

✓ XRISM PSF will mix the data **spatially**... but also **spectrally**!

➡ Spatial-spectral Mixing (SSM)

✓ The SSM will affect mostly Resolve (...but it may be also substantial in Xtend, depending on the science case / observing strategy)

Internal SSM:

- ✓ When the emission within the same field of view mixes across pixels and "contaminate" other regions within the same field of view
- ✓ Examples: supernova remnants, complex starforming regions, clusters with cavities, etc.

Internal SSM:

- ✓ When the emission within the same field of view mixes across pixels and "contaminate" other regions within the same field of view
- ✓ Examples: supernova remnants, complex starforming regions, clusters with cavities, etc.

Internal SSM:

N132 D!

- ✓ When the emission within the same field of view mixes across pixels and "contaminate" other regions within the same field of view
- ✓ Examples: supernova remnants, complex starforming regions, clusters with cavities, etc.

Internal SSM:

N132 D!

- ✓ When the emission within the same field of view mixes across pixels and "contaminate" other regions within the same field of view
- ✓ Examples: supernova remnants, complex starforming regions, clusters with cavities, etc.

External SSM:

✓ When sources outside the detector contaminate the detector region istelf

✓ Examples: outskirts of a cool-core cluster, bright AGN nearby an extended source, etc.

Addressing the problem

Ready to fall into the rabbit hole...?

✓ S_i = observed *spectrum* of detector region i
✓ M_J = *spectral model* of sky region J
✓ R_i = *response matrix* (RMF) of detector region i
✓ A_i = *effective area* (ARF) of detector region i

✓ S_i = observed spectrum of detector region i
✓ M_J = spectral model of sky region J
✓ R_i = response matrix (RMF) of detector region i
✓ A_i = effective area (ARF) of detector region i

✓ S_i = observed **spectrum** of detector region i

- ✓ M_J = spectral model of sky region J
- \checkmark **R**_i = *response matrix* (RMF) of detector region i
- \checkmark **A**_i = **effective** area (ARF) of detector region i

✓ S_i = observed spectrum of detector region i
✓ M_J = spectral model of sky region J
✓ R_i = response matrix (RMF) of detector region i
✓ A_i = effective area (ARF) of detector region i

 $S_c = A_c R_c$ M_c

 $S_c = A_c R_c M_c$

 $S_c = A_c R_c M_c$

 $S_{c} = A_{c} R_{c} \left[\mathbf{P}_{\mathbf{C} \rightarrow_{\mathbf{C}}} M_{\mathbf{C}} + \mathbf{P}_{\mathbf{E} \rightarrow_{\mathbf{C}}} \mathbf{M}_{\mathbf{E}} \right]$

 $S_{c} = A_{c} R_{c} [P_{C \rightarrow c} M_{C} + P_{E \rightarrow c} M_{E} + P_{NW \rightarrow c} M_{NW}$

 $S_{c} = A_{c} R_{c} [P_{C \rightarrow c} M_{C} + P_{E \rightarrow c} M_{E} + P_{NW} \rightarrow_{c} M_{NW} + P_{SW} \rightarrow_{c} M_{SW}]$

 $S_{e} = A_{e} R_{e} [P_{C \rightarrow e} M_{C} + P_{E \rightarrow e} M_{E} + P_{NW \rightarrow e} M_{NW} + P_{SW \rightarrow e} M_{SW}]$

 $S_{nw} = A_{nw} R_{nw} \left[P_{C \rightarrow nw} M_{C} + P_{E \rightarrow nw} M_{E} + P_{NW \rightarrow nw} M_{NW} + P_{SW \rightarrow nw} M_{SW} \right]$

 $S_{sw} = A_{sw} R_{sw} \left[P_{C \rightarrow sw} M_C + P_{E \rightarrow sw} M_E + P_{NW \rightarrow sw} M_{NW} + P_{SW \rightarrow sw} M_{SW} \right]$

$$S_{c} = A_{c} R_{c} [P_{C \rightarrow c} M_{C} + P_{E \rightarrow c} M_{E} + P_{NW \rightarrow c} M_{NW} + P_{SW \rightarrow c} M_{SW}]$$

$$S_{e} = A_{e} R_{e} [P_{C \rightarrow e} M_{C} + P_{E \rightarrow e} M_{E} + P_{NW \rightarrow e} M_{NW} + P_{SW \rightarrow e} M_{SW}]$$

$$S_{nw} = A_{nw} R_{nw} [P_{C \rightarrow nw} M_{C} + P_{E \rightarrow nw} M_{E} + P_{NW \rightarrow nw} M_{NW} + P_{SW \rightarrow nw} M_{SW}]$$

$$S_{sw} = A_{sw} R_{sw} [P_{C \rightarrow sw} M_{C} + P_{E \rightarrow sw} M_{E} + P_{NW \rightarrow sw} M_{NW} + P_{SW \rightarrow sw} M_{SW}]$$

$$Fifteetive areas of detector region i Response matrices of detector region i Spectral models of sky region J of sky re$$

J

4 x 4 = 16 models fitted simultaneously to 4 observed spectra

How to obtain the $P_{J \rightarrow i}$ coefficients?

- Method 1: leave normalizations of the 16 models free
 - ...Bad idea! (Empirical, black box, too many free params, degeneracies, etc.)
- Method 2: estimate coefficients from ray-tracing simulations
 - ...Via ARF generator (part of the future XRISM data reduction software)

- → Method 2: estimate coefficients from ray-tracing simulations
 - → …Via ARF generator (part of the future XRISM data reduction software)

Credits: T. Yaqoob

- → Method 2: estimate coefficients from ray-tracing simulations
 - → ...Via ARF generator (part of the future XRISM data reduction software)

- → Method 2: estimate coefficients from ray-tracing simulations
 - → …Via ARF generator (part of the future XRISM data reduction software)

- → Method 2: estimate coefficients from ray-tracing simulations
 - → …Via ARF generator (part of the future XRISM data reduction software)

$$S_{c} = A_{c} R_{c} [P_{C \rightarrow c} M_{C} + P_{E \rightarrow c} M_{E} + P_{NW \rightarrow c} M_{NW} + P_{SW \rightarrow c} M_{SW}]$$

$$S_{e} = A_{e} R_{e} [P_{C \rightarrow e} M_{C} + P_{E \rightarrow e} M_{E} + P_{NW \rightarrow e} M_{NW} + P_{SW \rightarrow e} M_{SW}]$$

$$S_{nw} = A_{nw} R_{nw} [P_{C \rightarrow nw} M_{C} + P_{E \rightarrow nw} M_{E} + P_{NW \rightarrow nw} M_{NW} + P_{SW \rightarrow nw} M_{SW}]$$

$$S_{sw} = A_{sw} R_{sw} [P_{C \rightarrow sw} M_{C} + P_{E \rightarrow sw} M_{E} + P_{NW \rightarrow sw} M_{NW} + P_{SW \rightarrow sw} M_{SW}]$$

$$Fifteetive areas of detector region i Response matrices of detector region i Spectral models of sky region J of sky re$$

J

$$S_{c} = R_{c} [A_{C} \rightarrow_{c} M_{C} + A_{E} \rightarrow_{c} M_{E} + A_{NW} \rightarrow_{c} M_{NW} + A_{SW} \rightarrow_{c} M_{SW}]$$

$$S_{e} = R_{e} [A_{C} \rightarrow_{e} M_{C} + A_{E} \rightarrow_{e} M_{E} + A_{NW} \rightarrow_{e} M_{NW} + A_{SW} \rightarrow_{e} M_{SW}]$$

$$S_{nw} = R_{nw} [A_{C} \rightarrow_{nw} M_{C} + A_{E} \rightarrow_{nw} M_{E} + A_{NW} \rightarrow_{nw} M_{NW} + A_{SW} \rightarrow_{nw} M_{SW}]$$

$$S_{sw} = R_{sw} [A_{C} \rightarrow_{sw} M_{C} + A_{E} \rightarrow_{sw} M_{E} + A_{NW} \rightarrow_{sw} M_{NW} + A_{SW} \rightarrow_{sw} M_{SW}]$$

$$Observed spectra of detector region i$$

$$S_{i} = R_{i} \sum_{J} A_{J} \rightarrow_{i} M_{J}$$

4 x 4 = 16 models fitted simultaneously to 4 observed spectra

$$S_{c} = R_{c} [A_{C} \rightarrow c M_{C} + A_{E} \rightarrow c M_{E} + A_{NW} \rightarrow c M_{NW} + A_{SW} \rightarrow c M_{SW}]$$

$$S_{e} = R_{e} [A_{C} \rightarrow e M_{C} + A_{E} \rightarrow e M_{E} + A_{NW} \rightarrow e M_{NW} + A_{SW} \rightarrow e M_{SW}]$$

$$S_{nw} = R_{nw} [A_{C} \rightarrow nw M_{C} + A_{E} \rightarrow nw M_{E} + A_{NW} \rightarrow nw M_{NW} + A_{SW} \rightarrow nw M_{SW}]$$

$$S_{sw} = R_{sw} [A_{C} \rightarrow sw M_{C} + A_{E} \rightarrow sw M_{E} + A_{NW} \rightarrow sw M_{NW} + A_{SW} \rightarrow sw M_{SW}]$$

$$\int Effective areas of detector region i$$

$$S_{i} = R_{i} \sum_{J} A_{J} \rightarrow i M_{J}$$

4 x 4 = 16 models fitted simultaneously to 4 observed spectra

- \$ xaarfgen telescop="XRISM" instrume="RESOLVE" (...)
 - regionfile="/path/to/my_detector_region_c.reg"
 sourcetype="IMAGE"

imgfile="/path/to/my_image_of_sky_region_E.fits"

\$ xaarfgen telescop="XRISM" instrume="RESOLVE" (...)
regionfile="/path/to/my_detector_region_c.reg"
sourcetype="IMAGE"
imgfile="/path/to/my_image_of_sky_region_E.fits"

my_image_of_sky_region_E.fits

\$ xaarfgen telescop="XRISM" instrume="RESOLVE" (...)
regionfile="/path/to/my_detector_region_c.reg"
sourcetype="IMAGE"
imgfile="/path/to/my_image_of_sky_region_E.fits"

Another concrete case (Perseus cluster)

12 detector regions

(obs1: 2 regions - obs2: 5 regions - obs3: 5 regions) (Larger than detector regions to account for external SSM)

J = 0, 1, ..., 12

$$S_i = R_i \sum_{J} A_{J \rightarrow i} M_J$$

6 sky regions

i = 0, 1, ..., 6

12 x 6 = 72 models fitted simultaneously to 12 observed spectra (!)

Another concrete case (Sagittarius A*)

35 detector regions
J = 0,1,...,35
35 sky regions
i = 0,1,...,35

$$S_i = R_i \sum_{J} A_{J \rightarrow i} M_J$$

35 x 35 = 1225 models fitted simultaneously to 35 observed spectra !!

Problem: XRISM ARFs are **very** heavy to generate (>1-1.5 hour per ARF)!

 \Rightarrow > 51 days on a single-core machine!

- Divide a few regions of interest in a smart way (e.g. regions with similar special features, "optimize" the SSM, etc.)...
- Treat each pixel separately vs "the rest" (modelled as a block)
- 3. Ignore regions with virtually inexistent SSM

- 4. A library of pre-computed PSFs may be made available some time soon (PSFlib)
- 5. ARFs can be computed over narrow energy ranges too...
- 6. ...other options with your host institute? (Grid computing, computing clusters, etc.)

- Divide a few regions of interest in a smart way (e.g. regions with similar special features, "optimize" the SSM, etc.)...
- Treat each pixel separately vs "the rest" (modelled as a block)
- 3. Ignore regions with virtually inexistent SSM

- 4. A library of pre-computed PSFs may be made available some time soon (PSFlib)
- 5. ARFs can be computed over narrow energy ranges too...
- 6. ...other options with your host institute? (Grid computing, computing clusters, etc.)

- Divide a few regions of interest in a smart way (e.g. regions with similar special features, "optimize" the SSM, etc.)...
- Treat each pixel separately vs "the rest" (modelled as a block)
- 3. Ignore regions with virtually inexistent SSM

- 4. A library of pre-computed PSFs may be made available some time soon (PSFlib)
- 5. ARFs can be computed over narrow energy ranges too...
- 6. ...other options with your host institute? (Grid computing, computing clusters, etc.)

- Divide a few regions of interest in a smart way (e.g. regions with similar special features, "optimize" the SSM, etc.)...
- Treat each pixel separately vs "the rest" (modelled as a block)
- 3. Ignore regions with virtually inexistent SSM

- 4. A library of pre-computed PSFs may be made available some time soon (PSFlib)
- 5. ARFs can be computed over narrow energy ranges too...
- 6. ...other options with your host institute? (Grid computing, computing clusters, etc.)

- Divide a few regions of interest in a smart way (e.g. regions with similar special features, "optimize" the SSM, etc.)...
- Treat each pixel separately vs "the rest" (modelled as a block)
- 3. Ignore regions with virtually inexistent SSM

- 4. A library of pre-computed PSFs may be made available some time soon (PSFlib)
- 5. ARFs can be computed over narrow energy ranges too...
- 6. ...other options with your host institute? (Grid computing, computing clusters, etc.)

Advice and recommendations

✓ Your favorite extended source will (very) likely be affected by SSM!

- ✓ Systematic uncertainties (SSM, background, effective areas, calibration, etc.)
- ✓ Substantial SSM is not necessarily "bad" (see above example with ~50% purity)
- ✓ Data analysis will NOT be a simple XSPEC fit! (e.g. investigation of spectral signatures of SSM before fitting - see Anna's talk on Friday)
- ✓ Recommended to plan a coherent tiling of regions to investigate
- ✓ "Brute-force" multi-pixel array spectroscopy is challenging...

1. What is the **spatial (and spectral) structure** of the extended source? (clues from Chandra / XMM, previous literature, etc.)

2. How is SSM likely to impact the **analysis** of the proposed source?

- 3. How is SSM expected to impact the **proposed science goals**?
- 4. Will the source be analyzed over several **spatial regions**? If so, which tiling strategy (and why)?

- 5. What **method(s)** is/are thought to be the most appropriate to tackle internal SSM effects? (e.g. computing precise ARFs directly, using PSFlib, using an alternative or hybrid method, etc.)
- 6. Is **external SSM** expected to impact the analysis (and output science) of the source?
- 7. Other properties of the source expected to further complicate the analysis? (e.g. pile-up effects, uncertainties in atomic databases impacting spectral features relevant to the science goals, etc.)
✓ We are entering a new era... lots of challenges and lessons to learn (exciting on this aspect too!) ✓ We are entering a new era... lots of challenges and lessons to learn (exciting on this aspect too!)

