18 January 2024, The 2nd XRISM Community Workshop, University of Maryland College Park (USA)

Make your own XRISM responses

✓ fmernier@umd.edu

- ✓ Spec = observed spectrum
- ✓ Mod = spectral model
- ✓ RMF = response matrix
- ✓ ARF = effective area

Ε

✓ ARF = effective area

- ✓ Spec = observed spectrum
- ✓ Mod = spectral model
- ✓ RMF = response matrix
- ✓ ARF = effective area

- ✓ Spec = observed spectrum
- ✓ Mod = spectral model
- ✓ RMF = response matrix
- ✓ ARF = effective area

Resolve

RMFs

✓ rsl_Hp_5eV.rmf
✓ rsl_Mp_6eV.rmf
✓ rsl_Lp_18eV.rmf

ARFS (GV closed)

✓ rsl_standard_GVclosed.arf

- ✓ rsl_pointsource_fwBe_GVclosed.arf
- ✓ rsl_pointsource_fwND_GVclosed.arf
- ✓ rsl_pointsource_off_GVclosed.arf
- ✓ rsl_extflat_GVclosed.arf
- ✓ rsl_extbeta_GVclosed.arf

Xtend

RMFs

✓ xtd_standard.rmf

ARFs

✓ xtd_standard.arf✓ xtd_extflat.arf

provided."

"I want an ARF for a circular source with 1 arcmin radius and 2 Arcmin off-axis."

The solution...

Make RMFs (and ARFs) from real data!

...But we are only at Cycle 1. No data is available yet!

Fair point... (Then let's dig into the XRISM software and CALDB.)

Warning: we encourage you to make your own responses ONLY if you have a good reason to do so!

(Remember, canned responses are provided too...)

What you need:

- ✓ rmfparam file: File containing basic RMF parameters. (Available in CALDB)
- ✓ rsl_1att_b7optaxis.expo: Dummy exposure map file for making Resolve non-observation ARFs. OPEN filter, gate valve OPEN. (Provided separately)
- ✓ rsl_35pix_det.reg: Resolve region file for all pixels, in DET coordinates, used to make non-observation ARFs. (Provided separately)
- ✓ rsl_onaxiscfile_0p3to18kev.fits: Energy grid file needed for raytracing to make canned ARFs. (Provided separately)

Anatomy of the rmfparam file

(e.g./path/to/CALDB/data/xrism/resolve/bcf/response/xa_rsl_rmfparam_20190101v005.fits.gz)

Anatomy of the rmfparam file

(e.g./path/to/CALDB/data/xrism/resolve/bcf/response/xa_rsl_rmfparam_20190101v005.fits.gz)

Credits: T. Yaqoob

Anatomy of the rmfparam file

(e.g./path/to/CALDB/data/xrism/resolve/bcf/response/xa_rsl_rmfparam_20190101v005.fits.gz)

Credits: T. Yaqoob

I want an RMF with a resolution of 10 eV exactly.

\$ rslrmf infile=NONE outfile="rsl_10eV" pixel=27
resol=Hp rmfparamfile="my_edited_rmfparam_file.fits"

Modified rmfparam file with all values of all pixel columns (or, at the very least, pixel 27) in ______GAUSFWHM1 are set to 10 (using ftcalc, python,...)

I want an RMF for Hp events at pixel 27 with electron loss continuum.

\$ rslrmf infile=NONE outfile="rsl_Hp_pix27_XL" pixel=27
resol=Hp rmfparamfile="CALDB" whichrmf=X splitrmf=yes
elcbinfac=32

Creates an Xtra Large RMF that includes ELC

Splits the RMF into two files (necessary to avoid a >2 GB size)

Coarser bin on the ELC part

of the matrix

✓ These RMFs do NOT account for branching ratios! (i.e. they assume only the values given at energies and pixels from the rmfparam file)

✓ CanNOT be representative of the entire detector (including all pixels) because the sum of Gaussians is NOT a Gaussian!

Then how do I do to get a super realistic RMF?

Make RMFs (and ARFs) from real data! 69

Credits: T. Yaqoob

I want an ARF for a point source located exactly on the detector's upper right corner.

Energy grid (can also be entered manually)

area, PSF, Log)

I want an ARF for a point source located exactly on the detector's upper right corner.

I want an ARF for a point source located exactly on the detector's upper right corner.

I want an ARF for a point source located exactly on the detector's upper right corner.

I want an ARF for a point source located exactly on the detector's upper right corner.

Step 1: Run xrtraytrace

\$ fhelp xrtraytrace

Warning: can take a long time! (Depending on the energy grid...)

Step 2: If necessary, change the FILTER and GATEVALV keywords in the (dummy) **exposure map** file

- \$ fthedit "rsl_latt_b7optaxis.expo[1]" FILTER add OPEN
 comment="Filter state"
- \$ fthedit "rsl_latt_b7optaxis.expo[1]" GATEVALV add CLOSED comment="Gatevalve state"

I want an ARF for a point source located exactly on the detector's upper right corner.

Exposure map used only for partial pixel exp.

Step 3: Run xaxmaarfgen (with the simulated event list as input file)

fractions (and FILTER and GATEVALVE keywords) \$ xaxmaarfgen telescop="XRISM" instrume="RESOLVE" emapfile="rsl 1att b7optaxis.expo" rmffile="rsl Hp 5eV.rmf" onaxiscfile="rsl onaxiscfile 0p3to18kev.fits[1]" Detector region (on which outfile="rsl pointsource uppercorner.arf" the ARF is extracted). In regionfile="rsl 35pix det.reg" ----DET coordinates! xrtevtfile="rsl pointsource uppercorner phist.fits" gefile="CALDB" contamifile="CALDB" Input event list gatevalvefile="CALDB" onaxisffile="CALDB" (simulated from xrtraytrace)

I want an ARF for a beta extended source with other parameters than provided.

I want an ARF for a beta extended source with other parameters than provided.

\$ fhelp **xrtraytrace**

betapars="1.26 0.53 5.7"

Step 1: Run xrtraytrace

 $N(r) = C [1 + (r/r_c)^2]^{(1.5-3\beta)}$

I want an ARF for a beta extended source with other parameters than provided.

\$ fhelp **xrtraytrace**

betapars="1.26 0.53 5.7"

Step 1: Run xrtraytrace

$N(r) = C \left[1 + (r/r_c)^2\right]^{(1.5-3\beta)}$

I want an ARF for a beta extended source with other parameters than provided.

Step 1: Run xrtraytrace

\$ fhelp **xrtraytrace**

betapars="1.26 0.53 5.7"

$N(r) = C \left[1 + (r/r_c)^2\right]^{(1.5-3\beta)}$

Step 2 & 3: As before

What you need:

- √xtd_1att_nobadpix_b7optaxis.expo: Dummy exposure map file for making Xtend non-observation ARFs. OPEN filter, gate valve OPEN. (Provided separately)
- ✓ xtd_det_r2p50_b7optaxis.reg: Xtend 2.5' radius circle region file in DET coordinates, centered on the optical axis position, used to make non-observation ARFs. (Provided separately)
- ✓ xtd_onaxiscfile_0p3to18kev.fits: Energy grid file needed for raytracing to make canned ARFs. (Provided separately)

Generating Xtend ARFs

I want an ARF for a circular source with 1 arcmin radius and 2 arcmin off-axis.

\$ fhelp **xrtraytrace**

Step 1: Run **xrtraytrace**

The source is now a flat circle

Now using Xtend (also in input and output files)

\$ xrtraytrace telescop="XRISM" instrume="XTEND" energy="xtd_onaxiscfile_0p3to18kev.fits[1]" numphoton=600000 fastmode=yes offaxis=2.0 roll=0.0 source="FLATCIRCLE" flatradius=1.0 outphistfile="xtd_extflatoff_phist.fits" outeafile="xtd_extflatoff_ea.fits" outpsffile="xtd_extflatoff_psf.fits" logfile="xtd_extflatoff_log.log" mirrorfile="CALDB" obstructfile="CALDB" frontreffile="CALDB" backreffile="CALDB" pcolreffile="CALDB" scatterfile="CALDB" transmode="ALL" scattermode="ALL" psfpars="1 100 0.25" resplaneonly=yes phisttype=BRIEF

Radius of the flat circular source is set to 1 arcmin

Generating Xtend ARFs

I want an ARF for a circular source with 1 arcmin radius and 2 arcmin off-axis.

Step 1: Run **xrtraytrace**

\$ fhelp **xrtraytrace**

✓ In the case of Xtend, the on-aimpoint (i.e. center of the detector) almost coincides with the on-axis (i.e. center of the telescope)!

At detector aimpoint: offaxis=0.0 roll=0 is a good approximation

Step 2 & 3: As before

- ✓ Generating accurate ray-tracing events at many energies can take a long time!
- ✓ Try to find the best compromise between science case accuracy vs. computing cost
- ✓ Remember: this is an advanced tutorial! It is VERY likely that your science justification can reasonably be done with the responses already available online (provided by the GOF)