Atomic Physics: Issues, Diagnostics, and Uncertainties

Second XRISM Community Workshop UMD—Jan 19, 2024

Javier García NASA Goddard Space Flight Center

*With inputs and slides from Ralf Ballhausen and others

On the relevance of Lab Astro (X-rays)

Fundamental quantities are not married to any particular mission, but have long term applicability to a large number of problems

> Astro 2020 Decadal White Papers: Betancourt-Martinez+21, Kallman+21, Smith+21

Funding increase for both experiments and computational atomic physics

Training new generation of Lab Astro scientists

Upcoming missions will impose strong and immediate requirements for updated parameters and models

> XRISM, IXPE, eXTP, Athena, Lynx, LEM, Arcus, HEX-P, StrobeX

X-ray Emission Mechanisms

Continuum

Black-Body Bremsstrahlung (free-free)

Cyclotron & Synchrotron Inverse Compton Scattering

Lines

Bound-Bound Fluorescence Charge Exchange Cyclotron Exotic Physics (?)

X-ray Emission Mechanisms

Continuum

.

X-ray Emission Mechanisms

Lines

Liedahl+Torres05

The X-ray band ($\sim 0.1 - 10$ keV) covers the emission and absorption produced by the inner-shell transitions of the astrophysically abundant ions (C \rightarrow Ni).

- Line positions provide information about the gas composition (identification), as well as about its dynamics (redshifts, gas outflows)
- Line intensities provide information about the column of the absorbing material (including ions), constrains on the ionization degree of the gas ($\xi = L/nR^2$), temperature and density
- Line shapes provide information about the thermal and turbulent motions of the gas, and can also probe relativistic effects near strong gravitational fields

X-ray Emission Lines

.

K-shell Fluorescence

- Needs L-shell electrons
- Fluorescence yield ~ Z^4 , appreciable for a high-Z element
- Such a process is an important contributor to iron K emission

• Photoionization, then either $2p \rightarrow 1s$ radiative transition or Auger ionization

Astrophysical Plasmas

Photoionized

Collisional

kT ~ Ionization energy of the ions in the plasma

kT << lonization energy of the ions in the plasma

T is not a free parameter!

Plasma Codes and Databases

Understanding a plasma requires a physical model. For these, a large number of atomic lines are needed (hundreds or more). Modern plasma codes have made of the hard work, compiling millions of transitions!

Collisional

SPEX/CIE Chianti AtomDB

(Kaastra+03) (Del Zanna+21) (Foster+12)

Photoionized

Cloudy XSTAR SPEX/PIE Moccasin Titan

(Ferland+17) (Kallman+Bautista01) (Kaastra+03) (Ercolano+03) (Dumont+00)

ŚŚ

http://www.sron.nl/spex http://chiantidatabase.org http://atomdb.org

http://www.nublado.org https://heasarc.gsfc.nasa.gov/xstar/xstar http://www.sron.nl/spex https://mocassin.nebulousresearch.org

The Interstellar Medium (ISM)

Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO

The Interstellar Medium (ISM)

Absorption in the ISM

atomic data and model accuracy.

Simple absorption model:

 $\tau(E)$: Total optical depth $\sigma_i(E)$: Photoionization cross N_i : Ion column density

Thus, the goal is to compute the photoionization cross section for all ions

Observations of absorption lines in the ISM are a driver for the improvement of

Wilms et al. (2000)

Absorption in the ISM

atomic data and model accuracy.

Simple absorption model:

 $\tau(E)$: Total optical depth $\sigma_i(E)$: Photoionization cross N_i : Ion column density

Thus, the goal is to compute the photoionization cross section for all ions

Observations of absorption lines in the ISM are a driver for the improvement of

Wilms et al. (2000)

Inner-shell Photo-Ionization

.

Inner-shell Photo-Ionization

.

Palmeri+02; Bautista+03; Palmeri+03a,b; Mendoza+04; Kallman+04

Inner-shell Photo-Ionization

Palmeri+02; Bautista+03; Palmeri+03a,b; Mendoza+04; Kallman+04

García+05; Gorczyca+13;

Palmeri+02; Bautista+03; Palmeri+03a,b; Mendoza+04; Kallman+04

García+05; Gorczyca+13; García+09;

García+05; Gorczyca+13; García+09; Witthoeft+11a,b; Hasoglu+14

Chandra HETG spectrum of the low-mass X-ray binary XTE J1817—330. The oxygen Kband shows several features identified with ionized species.

Gatuzz, JG+13

Chandra HETG spectrum of the low-mass X-ray binary XTE J1817—330. The oxygen Kband shows several features identified with ionized species.

Gatuzz, JG+13

band shows several features identified with ionized species.

Gatuzz, JG+13

band shows several features identified with ionized species.

Gatuzz, JG+13

band shows several features identified with ionized species.

Gatuzz, JG+13

band shows several features identified with ionized species.

Gatuzz, JG+13

band shows several features identified with ionized species.

Gatuzz, JG+13

Shifts of ~33 mA for O I and 75 mA O II, Ka different from the high-n resonances

Resonance positions in disagreement with laboratory experiments

O I shifts of ~580 meV

McLalughlin+13: Gratings on Chandra and XMM need to be re-calibrated(!?)

Source	1s - 2p	$1s - 3p^4P$
This work	527.26(4)	541.645(12)
Gorczyca et al. [16] XMM, Mkn 421	527.28(5)	541.93(28)
Gorczyca et al. [16] Chandra	527.44(9)	541.72(18)
Gorczyca et al. [16] Chandra, shifted	527.26(9)	
Liao et al. [38] Chandra, average	527.39(2)	
McLaughlin <i>et al.</i> $[18]$ ALS	526.79(4)	541.19(4)

Source	$1s - 2p$ $1s - 3p^4P$
This work	527.26(4) $541.645(12)$
Gorczyca et al. [16] XMM, Mkn 421	527.28(5) $541.93(28)$
Gorczyca et al. [16] Chandra	527.44(9) $541.72(18)$
Gorczyca et al. [16] Chandra, shifted	527.26(9)
Liao et al. [38] Chandra, average	527.39(2)
McLaughlin <i>et al.</i> $[18]$ ALS	526.79(4) $541.19(4)$

Source	$1s - 2p$ $1s - 3p^4h$	C
This work	527.26(4) $541.645(1$	$\overline{2})$
Gorczyca et al. [16] XMM, Mkn 421	527.28(5) $541.93(28)$,)
Gorczyca et al. [16] Chandra	527.44(9) $541.72(18)$)
Gorczyca et al. [16] Chandra, shifted	527.26(9)	
Liao et al. [38] Chandra, average	527.39(2)	
McLaughlin <i>et al.</i> [18] ALS	526.79(4) $541.19(4)$	

Source	$1s - 2p$ $1s - 3p^4P$
This work	527.26(4) $541.645(12)$
Gorczyca et al. [16] XMM, Mkn 42	527.28(5) $541.93(28)$
Gorczyca et al. [16] Chandra	527.44(9) $541.72(18)$
Gorczyca et al. [16] Chandra, shifted	527.26(9)
Liao et al. [38] Chandra, average	527.39(2)
McLaughlin <i>et al.</i> [18] ALS	526.79(4) $541.19(4)$

Source	$1s - 2p$ $1s - 3p^4P$
This work	527.26(4) $541.645(12)$
Gorczyca et al. [16] XMM, Mkn 42	527.28(5) $541.93(28)$
Gorczyca et al. [16] Chandra	527.44(9) $541.72(18)$
Gorczyca et al. [16] Chandra, shifted	527.26(9)
Liao et al. [38] Chandra, average	527.39(2)
McLaughlin <i>et al.</i> [18] ALS	526.79(4) $541.19(4)$

Source	$1s - 2p$ $1s - 3p^4P$
This work	527.26(4) $541.645(12)$
Gorczyca et al. [16] XMM, Mkn 42	527.28(5) $541.93(28)$
Gorczyca et al. [16] Chandra	527.44(9) $541.72(18)$
Gorczyca et al. [16] Chandra, shifted	527.26(9)
Liao et al. [38] Chandra, average	527.39(2)
McLaughlin <i>et al.</i> [18] ALS \langle	526.79(4) $541.19(4)$

ISMabs: Ionized (Atomic) Absorption Model

* Includes H, He, C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe
* Only neutrals, single and double ionized species (e.g., O I, O II, O III)
* Fit for column densities of each ion (no ionization equilibrium)

Gatuzz, JG+15

Other Compounds

Rogantini+19

Si K-edge

Zeegers+15,+19

Rogantini+18

Fe K-edge

Case II: The Perseus Cluster with Hitomi

- Analysis with different plasma codes gives statistically acceptable fits
- 16% difference in Fe abundance between SPEX and APEC
- Reason: Different collisional excitation and dielectronic recombination rates

Hitomi Collaboration+18

Atomic Data Uncertainties

Database Comparison Approach

Model Comparison Approach

Mernier+20

Sources of atomic data: XSTAR—García+05 SPEX—Kaastra+18

Psaradaki+20

Mehdipour+Kaastra+Kallman16

Atomic Data Uncertainties

Monte Carlo Approach

Foster+Heuer20

O VII R ratio with a $\pm 15\%$ uncertainty on the DE rates and A-values of the forbidden, resonance, and inter- combination lines

Heuer, Foster+Smith21

.

Atomic Data Uncertainties

Data Driven Approach

Gu+22

Simulated spectra for a CIE plasma

Derived systematic uncertainties in temperature, abundances, and line emission

Ballhausen+23

Good: Atomic data uncertainties can account for some of the fit deficiencies, but not entirely!

Bad: the statistical treatment is not trivial

Final Remarks

Laboratory astrophysics plays a fundamental role in the study of astrophysical sources and thus needs to be considered with care

- The higher the resolution and/or signal, the larger is the pain! Atomic data uncertainties can be important (10's %), and still not fully understood
- Be mindful of your limitations regarding model and data: with great data used in the way they are intended

 The ultimate goal is to understand the physics, not just to have a good fit! => Talk to your Lab Astro or Atomic Physicist of trust, they will help you!

comes great responsibility. Spectral models are highly complex and need to be

Other Resources

- * Ralf Ballhausen's talk from the 1st XRISM Workshop (2023)
- * Randall Smith's online slides on spectral codes
- * NIST website
- * AtomDB
- * UADB

.