January 17-19, 2024 The 2nd XRISM Community Workshop

Geometric constraints for AGN and ULX with XRISM and MONACO

Marina Yoshimoto (Osaka Univ., Xtend/SOC) H. Odaka, H. Noda, H. Matsumoto (Osaka Univ.) T. Yoneyama (Chuo Univ.)

@Tanegashima 9/7 (JST)

1

XRISM in H2A

Molecular Gas Gap around AGN

e.g., NGC1068 AGN region

HCN (J=3-2) moment 0 map

 The mechanism of mass transport from host galaxies to SMBHs
 (= how they lose angular momentum) is still unclear

"molecular gas gaps"

- < 10 -100 pc
- between a circum-nuclear disk (CND) and a torus
- in radio band

Beyond Radio Observation

e.g., NGC1068 AGN region

HCN (J=3-2) moment 0 map

- Radio Observation

- high angular resolution (< 0.1 arcsec)
- high statistics
- ⇒ Suitable for measuring matter distribution
- but ... depends on

specific molecule and rotational transition level

- For the **molecular gas gaps**, we cannot distinguish...
 - matter exists but is unobservable in the radio band ("connected model")
 - ⇒ radio observations are not enough to trace mass transport...

and

- matter does not exist ("gap model")
- \Rightarrow new mechanisms to decrease angular momentum are needed!

X-ray Observation

e.g., NGC1068 AGN region

Fe 6.4 keV Equivalent width map from a Chandra observation

- X-ray observation
- Atomic emission lines (e.g., Fe 6.4 keV) have low temperature and density dependence
- The atomic distribution anti-correlated with molecular gas? (e.g., Nakata et al. 2021)

but ...

- Equivalent width maps are highly indefinite
 - \Rightarrow affected by continuum components
 - \Rightarrow requires long observation time
- Highest angular resolution is ~ 0.5 arcsec

\Rightarrow We try another way!

Imaging to Spectroscopy

- We use the high energy resolution of XRISM/Resolve to reveal matter distribution!
 Resolve achieves FWHM < 5 eV @ 6 keV
- 1 Assume matter distribution (Fe 6.4 keV) with Keplerian for **molecular gas gaps**
 - a) matter exists continuously ("connected model")
 - b) matter does not exist ("gap model")
- ② Compare the line models with the observations and determine the matter distribution from the highest likelihood

simulation results of NGC1068 200 ks observation

Imaging to Spectroscopy

- MONACO (Monte Carlo simulation for Astrophysics and Cosmology; Odaka et al. 2011)
 will be used to construct the emission line model from the Fe distribution
 - an X-ray radiation calculation code based on a Monte Carlo method
 - account for complex geometries, velocity distributions, and multiple interactions between photons and matter
 - ⇒ Useful to constrain geometry of molecular gas gaps!

Neutron Star ULX

- Ultraluminous X-ray Source (ULX)
 - $L_{\rm X} > 10^{39} \, {\rm erg \, s^{-1}}$
 - \cdot spectra resemble the Galactic binary
- Nature
 - IMBH in sub-Eddington accretion or
 - stellar mass BH or NS in super-Eddington accretion
 - ⇒ pulsation
 - e.g., M82 X-2 (Bachetti et al. 2014)
 - 1.37 seconds
 - $L_{\rm X} = 1.8 \times 10^{40} \, {\rm erg \, s^{-1}}$

ULX pulsar (ULXP) = NS

Fabrika et al. 2021

Magnetic Field Geometry

- M51 ULX8
- absorption line

Magnetic Field Geometry

- M51 ULX8
- absorption line at 4.5 keV (no major line)
- ⇒ Cyclotron Resonance Scattering Feature (CRSF)? estimating the surface magnetic field:
 - electron: 5×10¹¹ G
 - proton: 9×10¹⁴ G

(gravitational redshift: $z_g = 0.25$)

 \Rightarrow NS

but...

- line is narrow ($\sigma \sim 0.1$ keV) compared with other CRSFs
- pulsation is not detected so far...

Magnetic Field Geometry

- XRISM/Resolve observation to investigate CRSF or NOT
- ${f 1}$ resolve the absorption line
 - a) assembly of atomic lines

b) CRSF

② Using MONACO to estimate the structure of the magnetic field

the narrow line can be explained by ...

a) multi-pole field

b) dipole field

③ find second harmonics (expected at 9 keV)

reveal the structure of surface magnetic field in NS ULX!

Outflow of ULX

(modified from Mushtukov et al. 2017, 2019)

- ULX in supercritical accretion can be accompanied by **outflow**
 - absorption (and emission) lines (Pinto et al. 2016, 2017)
 - ultlafast (~ 0.2c)
- spectra components of NS ULX: accretion disk, outflow, accretion column, accretion curtain ?
- pulsation and CRSF cannot always be observable
 - ⇒ The magnetosphere is hidden sometimes by the outflow due to

precession of accretion disk ?

e.g., NGC4395 ULX1: ~ 63 days Holmberg XI X-1: ~ 266 days

Outflow of ULX

Schematic picture of NS ULX

(modified from Mushtukov et al. 2017, 2019)

- We focus on ULX Pulsar with known precession period and **explore the outflow** with monitoring observation e.g., NGC 5907 ULX-1
- If we detect Fe absorption lines (outflow) ...
 - constrain geometry in the line of sight with MONACO (1)
 - (2) investigate relations between...
 - · outflow geometry in line of sight and phase of precession • existence of pulsation and phase of precession
 - \Rightarrow outflow and magnetic field are correlated?

reveal the geometry of ULX more clearly!

Summary

We use XRISM and MONACO to reveal...

mass transport mechanism in AGN (NGC1068)

by investigating matter distribution and motion in the molecular gas gap structure

- surface magnetic field in NS ULX (M51 ULX8)
 by investigating CRSF or NOT for absorption line
- correlation between a magnetosphere and an outflow in Pulsar ULX (NGC 5907 ULX-1) by investigating outflow structure for absorption line with phase of precession and existence of pulsation