

X-ray Winds In Nearby-to-distant Galaxies (X-WING) - I: Legacy Surveys of Galaxies with Warm Absorbers and Ultrafast Outflows in z ~ 0-4 Satoshi Yamada (RIKEN)

Collaborators :

Taiki, Kawamuro (RIKEN), Misaki Mizumoto (U. of Teacher Education Fukuoka), Hirofumi, Noda (Osaka U.), Claudio, Ricci (UDP), Shoji, Ogawa (ISAS/JAXA), Yoshihiro, Ueda (Kyoto U.), Teruaki, Enoto (Kyoto U.), Mitsuru, Kokubo (NAOJ), Takeo, Minezaki, Hiroaki, Sameshima, Takashi, Horiuchi, and Shoichiro, Mizukoshi (U. of Tokyo)

AGN Feedback

- Active Galactic Nuclei (AGNs) are an important population for understanding
 - Supermassive black hole (SMBH) growth
 - AGN feedback onto their host galaxies
- AGN feedback: a key role in explaining the strong connection between SMBHs and host galaxies (e.g. M-σ relation)
- However, **the multi-scale structure of outflows** makes it difficult to unveil the feedback effect.

Multiphase Outflows

• The AGN outflows are composed of diverse components (e.g. Laha+21, Nature)

• X-ray

- Ultrafast outflow (UFO; v ~ 0.1-0.3c)
- Warm absorber (WA; v ~ 100-2000 km/s)
- UV: broad/narrow absorption line (BAL/NAL)
- Optical: ionized/neutral outflow
- IR: hot ionized/mol., dusty, cold mol.
- Submm/radio: cold mol. (+ relativistic jet)
- What is its overall stratified structure?
 (e.g., Velocities, locations, and outflow rates)

You Hi, ChatGPT. What is X-WING?

3

You

Hi, ChatGPT. What is X-WING?

ChatGPT

X-WING typically refers to a type of <u>starfighter in the fictional Star Wars</u> universe. The Incom T-65 X-wing starfighter is a versatile and iconic spacecraft used by the Rebel Alliance and later the New Republic in their fight against the Galactic Empire. X-WINGs are known for their agility, speed, and ability to engage both atmospheric and space combat.

X-WING © Star Wars

• X-WING (= X-ray Winds in Nearby-to-distant Galaxies)

• Database of multiphase outflows for AGNs with X-ray winds

- X-WING (= X-ray Winds in Nearby-to-distant Galaxies)
 - Database of multiphase outflows for AGNs with X-ray winds
- X-ray Winds
 - Ultrafast outflows (UFOs): the closest winds to the SMBH !!!
 - highly ionized (=> Fe XXV/XXVI)
 - High-speed winds (~0.1-0.3c)
 - Warm absorbers (WAs)
 - lower ionized winds
 - Slower winds (~100-2000 km/s)

Basic Parameters of X-ray Winds

- Outflow velocity (Vout), hydrogen column density (NH), and ionized parameter (ξ)
 - $\xi = \text{Lion/nR}^2$, where Lion is ionized luminosity, n is density, and R is the distance.
 - UFOs show high ξ (or small R) => detected by Fe XXV/XXVI absorption lines.
 - Warm absorbers show low ξ (or large R) => detected in the soft X-ray band.

Surveys of X-ray Winds

- Tombesi+13: UFOs and warm absorbers
 - Positive correlations: e.g., $\log \xi \log NH$, $\log \xi \log Vout$
 - However, sample/detection biases should be discussed. => Let's see the X-WING database!

X-WING Database (Yamada+, in prep.)

- The database of the X-ray wind activities measured in previous studies.
- Utilized instruments
 - WA: Chandra/HETGs, LETGs, XMM/RGS
 - UFO: Chandra/ACIS, XMM/pn, MOS, NuSTAR, Swift/XRT, Suzaku/XIS
- Sample: ~130 AGNs with UFOs and/or warm absorbers
 reported from ~1999 to 2023 (~240 papers)!!
 Tombesi+11,12,13, Gofford+13,15, Laha+14,16, etc.
- >300 OBSIDs, ~540 X-ray outflows (UFO+WA)
 - Duplicated reports are merged.
 - All errors and upper limits: 90% confidence level

X-WING: Distributions of Vout, NH, and ξ

- Vout, NH, and ξ distributions are classified by optical types (~ inclination?).
 - We reduce the sample biases as much as possible.
 - Not just linear relations (with large dispersion) => Verification of the detection biases

Detection Limits of UFOs

• Signal-to-noise (S/N) ratio of the line detection:

S/N =
$$\sqrt{A(E) t F(E)} \frac{W}{\sqrt{\max(\Delta E, W)}}$$

- A(E) is effective area, t is exposure time, and F(E) is photon flux.
- W is the equivalent width (EW), while ΔE is the energy resolution. (see ASTRO-H while paper, Kaastra+14)
- We simulate the EWs of individual Fe XXV/XXVI lines with XSTAR.
 - $\log \xi = 3-5$ and $\log NH = 20-24$
 - => The detection limits of UFOs.

$\log \xi$ vs. logNH: Linear Relation or Detection Bias?

- $\log \xi$ vs. \log NH classified by utilized instruments.
- The case of NGC 4151 (an early release target)
 - Flux(2-10 keV) = 5e-11 erg/s/cm2, t = 180 ks
 - <u>XMM/pn (dashed)</u> and <u>XRISM (GVO; solid)</u>
- High- ξ & Low-NH (bottom-right side):
 - The XMM limit is consistent with the data!!
 > Detection bias is strongly affected!!

 (not a physical ξ-NH correlation)
- XRISM will lower the detection limit!! => $\Delta \log \xi \sim 1$ or $\Delta \log NH \sim 0.5$ dex.

$\log \xi$ vs. logVout: Three Groups of Outflows

- We classified the X-ray winds:

 (1) UFO (V>10,000km, logξ>2)
 (2) low-ionized-parameter (low-IP) UFO (same V, but logξ<2)
 (3) WA (V<10,000km)
- We find a gap at V~10,000 km/s??

Detection with Fe XXV/XXVI or Other Lines

• The Vout gap is suggested with both the <u>Fe XXV/XXVI line (>6keV; red)</u> and <u>other lines (<6 keV; green)</u>.

Vout Gap at ~10,000 km/s: Is It Real?

- Abs lines detected in the <2 keV band:
 - Most studies identified the set of blueshifted lines. => Maybe the gap is real.
 - n.b. they are low-IP UFOs, not UFOs.

- Fe XXV/XXVI line (>6keV):
 - Fe XXVI line ~ Fe-K edge (due to neutral matter)
 - Fe XXV/XXIV abs lines are mixed with Fe emi.

=> XRISM must be needed to reduce the artifacts.

Continuous or Discontinuous?

- If the gap at Vout ~ 10,000 km/s is real, the origin of UFOs and WA might be quite different?
 - X-ray wind surveys with XRISM will answer whether the Vout gap is real or not!!

Continuous (w/o Vout gap)

Discontinuous (with Vout gap)

Database will be available publicly (in Feb-Mar)

ID (1)	Object (2)	R.A. (3)	Decl. (4)	z (5)	D] (6	L Class (7)	$\log M_{\rm BH}$ (8)	$\log L_{AGN,X}$ (9)	References ((10)	5,7,8,9)	
1 2 3	1E 0754.6+3928 1H 0323+342 1H 0419-577	$\begin{array}{c} 119.500218\\ 51.171505\\ 66.502995\end{array}$	+39.341388 +34.179405 -57.200492	0.0960 0.0630 0.1040	0 440 0 282 0 480	0.7 NLS1 2.7 NLS1 0.0 1.5	8.00 6.76 8.34	43.70 42.90 44.60	(Md20;Md20;Md (Me19;Pl14;K2 (To10;VC10;K2	d20;Md20) 22A;Ri17) 22A;Ri17)	
ID (1)	Object (2)	Star	rt date In (3) (nst. (4)	Fe-K (5)	$\log N_{\rm H}^{\rm (ion)}$ (6)	$\log V_{\rm ou}$ (7)	t log	g $\xi \log L_{\rm ior}$ 8) (9)	туре (10)	
	1E 0754.6+3928 1E 0754 6+3928	2006	3-04-18 3-04-18	P P	$\frac{Y}{Y}$	$\frac{23.11^{+0.25}_{-0.41}}{23.41^{+0.27}_{-0.41}}$	$4.84^{+0.0}_{-0.0}$ $3.71^{+0.0}$	$\begin{array}{ccc} 04 & 3.40 \\ 04 & 3.40 \\ 09 & 3.40 \end{array}$	$^{+0.30}_{-0.30}$ 44.15 $^{+0.10}_{-0.10}$ 44.15	UFO WA	
1c	1E 0754.6+3928	2006	6-04-18	P	n	$22.85^{+0.06}_{-0.07}$	<3.18	2.00	$\begin{array}{ccc} -0.10 & -1.10 \\ +0.05 & -0.05 \\ +0.07 & -44.15 \end{array}$	WA	
2a	1H 0323+342	2000	5-10-22 5-08-23 R	P PM	n	$22.00_{-0.06}^{+0.07}$ $20.86_{-0.08}^{+0.07}$	< 3.04 $2.94^{+0.0}_{-0.1}$	1.50_{11}^{09} 0.15_{12}^{09}	$ \begin{array}{cccc} -0.07 & 44.13 \\ +0.20 \\ -0.20 & (non) \\ +0.02 \\ \end{array} $	WA	
2b 3a	1H 0323+342 1H 0419-577	2015 2002	5-08-23 R 2-09-25	PM P	n Y	$20.95^{+0.14}_{-0.20}$ <23.61	$2.92^{+0.1}_{-0.1}$ $4.37^{+0.0}_{-0.1}$	$\begin{array}{cccc} 13 & 2.17 \\ 18 & 2.67 \\ 07 & 3.69 \end{array}$	$\begin{array}{c} +0.03 \\ -0.03 \\ +0.87 \\ -0.87 \\ -0.87 \end{array} (non)$	WA UFO	
ID (1)	Object (2)	OBS: (3)	OBSID (3)			References (4)		Related References (5)			
1a	1E 0754.6+3928	Nearby (z<1) Galaxies									
1b 1c 1d 2a	1E 0754.6+3928 1E 0754.6+3928 1E 0754.6+3928 1H 0323+342	305990101 305990101 406740101 764670101	Middei et al. (2020) Middei et al. (2020) Middei et al. (2020) Middei et al. (2020) Mehdipour & Costantini (2019)				ə)				
2b 3a	1H 0323+342 1H 0419-577	764670101 148000201	Mehdipour & Costantini (2019) Tombesi et al. (2012a)				9) Tombesi (Tombesi et al. (2011a)			

15

X-WING Paper I-III (Yamada+, in prep.)

- Paper I: X-ray winds, Lx, SMBH masses, OBSID, observation time (variability), etc.
- Paper II (UV-to-radio SED fit): host galaxy, AGN activities (e.g. λ_{Edd}), and outflow rates of X-ray winds.
- Paper III (Multiphase outflow): UV/optical/IR/submm/radio outflows

Summary

- X-WING (= X-ray Winds in Nearby-to-distant Galaxies)
 - Database of ~130 AGNs and >500 Winds (from >300 OBSID, ~240 papers)
- The distribution of ξ and NH covers the range of detection limit
 => XRISM will expand the parameter spaces and reduce the bias.
- We find a gap around Vout ~ 10,000 km/s.
 - Blueshifted Fe XXV/XXVI lines may be missed due to Kedge or the emission lines, but XRISM will solve whether the gap is real or not.
- X-WING database will be available publicly from ArXiv in February or March for XRISM proposers!
 => If you're interested in our database of X-ray winds, please contact us (satoshi.yamada@riken.jp)!!

(Slide: http://www.kusastro.kyoto-u.ac.jp/~styamada/share/xrismc2c_20240119_yamada.pdf)

X-WING © Star Wars