RXTE et al. Monitoring of Gamma-ray Bright Blazars

Alan Marscher
Boston University
Co-I’s: S. Jorstad, M. Aller, I. McHardy
Research Web Page: www.bu.edu/blazars
The Quasar PKS 1510-089 (z=0.361)

- Long-term connection between X-ray & radio
- Optical flux not so well correlated with radio, X-ray

Conclusion: X-rays are mainly external Compton by low-E electrons
- supports Madejski et al. & Kataoka et al.

Two bright superluminal blobs emerged during the outbursts in brightness during the 2nd half of 2008 & the 1st half of 2009

Simultaneous γ-ray & optical flares

X-ray & radio outbursts can be delayed by months

New superluminal knots cause one or more flares at some or all wavebands

\rightarrow Max. electron energy varies among knots

3C 279 in 2008-09

Simultaneous γ-ray, optical, & X-ray outbursts

Superluminal radio knot appeared as outburst started

X-ray dominant flare

Major flare at all 3 wavebands as 3C 279 faded into the sunset . . .
1-2 wavebands appear to participate in each flare, never all 3

Superluminal radio knots passing through 43 GHz core coincide with γ-ray and/or X-ray flares

3C 273 in 2008-09: γ-ray, X-ray, & I-band
Conclusions

- γ-ray and X-ray flares in jets are caused by superluminal knots ("blobs") that move down the jet, as seen in VLBA images.
- High-E photon emission in the jet occurs in multiple zones.
- High-E flares occur when electrons are energized: $\gamma > 1000$ needed for γ-ray flare; sometimes this is not achieved \rightarrow only X-ray monitoring can detect these blobs before they reach the 43 GHz “core”.
- High-E flares can also occur from inverse Compton scattering of local sources of seed photons (e.g., in slower sheath of jet) even if electron energies remain \sim same.
- Combination of RXTE & Fermi monitoring + VLBA imaging + multi-waveband flux & polarization monitoring is a powerful probe of inner jets of blazars.
PKS 1510-089: Flare in Aug-Sep 2008

Time delays of peaks:
- Optical first
- γ-ray 1 week later
- X-ray & radio 10 days after γ-ray

Superluminal knot (red arrow) passed through core before this flare

AGILE detection early in 2008 during optical flaring activity, at start of X-ray/radio rise
