Browse
this table...

XMMSTACK - XMM-Newton Serendipitous Source Catalog from Stacked Observations (4XMM-DR12s)

HEASARC
Archive

Overview

The stacked catalog 4XMM-DR12s has been compiled from 1,620 groups, comprising 9,355 overlapping good-quality XMM-Newton observations. They were selected from the public observations taken between 2000 February 1 and 2021 December 4 which overlap by at least one arcminute in radius. It contains 386,043 unique sources, 298,626 of them multiply observed, with positions and source parameters like fluxes in the XMM-Newton standard energy bands, hardness ratios, quality estimate, and information on inter-observation variability. The parameters are directly derived from the simultaneous fit, and, wherever applicable, additionally calculated for each contributing observation.

The catalog aims at exploring the multiply observed sky regions and exploit their survey potential, in particular to study the long-term behavior of X-ray emitting sources. It thus makes use of the long(er) effective exposure time per sky area and offers the opportunity to investigate flux variability directly through the source detection process. The main catalog properties are summarized in the table below, the data processing and the stacked source detection are described in the processing summary. To ensure detection quality, background levels are assessed, and event-based astrometric corrections are applied before running source detection. After source detections, problematic detections and detection parameters are flagged by an automated algorithm. All detections are screened visually, and obviously spurious sources are flagged manually. For the first time, 4XMM-DR12s includes PSF photometry in exposures that were not used in source detection for example because of a high background level, i.e. fluxes and flux-related parameters are derived at the source position and extent found during source detection.

This table contains the parameters of the 386,043 unique sources (provided in this table) derived from all of the observations (provided in the associated table of observations referred to as XMMSTACKOB) at the fitted position.

The authors referred to the EPIC instruments with the following designations: PN, M1 (MOS1), and M2 (MOS2). The energy bands used in the 4XMM processing were the same as for the 3XMM catalog.

The following are the basic energy bands:

     1:  0.2-0.5 keV
     2:  0.5-1.0 keV
     3:  1.0-2.0 keV
     4:  2.0-4.5 keV
     5:  4.5-12.0 keV
All-EPIC values cover the energy range 0.2-12.0 keV.

The full catalog documentation can be found at https://xmmssc.aip.de/.

The following table gives an overview of the statistics of this catalog in comparison with the previous stacked catalogs, 4XMM-DR11s through 3XMM-DR7s:

                                                       4XMM-DR12s          4XMM-DR11s          4XMM-DR10s          4XMM-DR9s           3XMM-DR7s

Number of stacks                                       1620                1475                1396                1329                434

Number of observations                                 9355                8292                7803                6604                789

Time span first to last observation                    Feb 01, 2000        Feb 03, 2000        Feb 03, 2000        Feb 03, 2000        Feb 20, 2000
                                                       -- Dec 04, 2021     -- Dec 17, 2020     -- Dec 14, 2019     -- Nov 13, 2018     -- Apr 02, 2016

Approximate sky coverage (sq. deg.)                    625                 560                 540                 485                 150

Approximate multiply observed sky area(sq. deg)        400                 350                 335                 300                 100

Total number of sources                                386043              358809              335812              288191              71951

Sources with several contributing observations         298626              275440              256213              218283              57665

Multiply observed sources with flag 0 or 1             252445              233542              216999              191497              55450

Multiply observed with a total detection               241880              224178              208921              181132              49935
         likelihood of at least six

Multiply observed with a total detection               205394              189556              176680              153487              42077
         likelihood of at least ten

Multiply observed point sources                        28587               23424               21672               20588               5358
         with VAR_PROB <= 1% and flag 0 or 1

Multiply observed point sources                        10447               8326                7728                7478                1839
         with VAR_PROB <= 10-5 and flag 0 or 1

Total measurements                                     1592263             1421966             1322299             1033264             216393

Maximum exposures per source                           155                 140                 140                 103                 69

Maximum observations per source                        70                  65                  65                  40                  23

Maximum on-time per source                             2.8 Ms              2.8 Ms              2.8 Ms              1.9 Ms              1.3 Ms

Catalog Bibcode

2020A&A...641A.137T

References

Traulsen et al. (2020), "The XMM-Newton serendipitous survey. X: The
second source catalogue from overlapping XMM-Newton observations and its
long-term variable content", <A&A, 641, A137 (2020)>
(2020A&A...641A.137T)

Traulsen et al. (2019), "The XMM-Newton serendipitous survey. VIII: The first
XMM-Newton serendipitous source catalogue from overlapping observations",
<A&A, 624, A77 (2019)> (2019A&A...624A..77T)
Users of the catalog are kindly asked to reference the above paper and to include the following policy statement: "This research has made use of data obtained from the 4XMM XMM-Newton serendipitous stacked source catalogue 4XMM-DR12s compiled by the institutes of the XMM-Newton Survey Science Centre selected by ESA."

Provenance

This database table was last updated by the HEASARC in July 2022. It contains the 4XMM-DR12s source catalog, released by ESA on 2022-07-28 and obtained from the XMM-Newton Survey Science Center Consortium at https://xmmssc.aip.de/cms/catalogues/4xmm-dr12s/. It is also available as a gzipped FITS file.

Parameters

Name
The source designation in the style of the 4XMM IAU names. The prefix on each of the names ends with an "s" to signify it is a stacked source.

SrcID
The unique identifier assigned to the source detection.

N_Obs
The number of observations involved in the stack.

N_Contrib
The number of observations with which the source was fitted.

N_Exp
The number of exposures covering the source.

N_Exp_Sdet
The number of exposures used in source detection.

N_Exp_Phot
The number of exposures used for PSF photometry.

RA
The Right Ascension of the source in the specified equinox. The position of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

Dec
The Declination of the source in the specified equinox. The position of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

LII
Galactic Longitude. The position of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

BII
Galactic Latitude. The position of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

Error_Radius
Square root of the squared sum of the 1-sigma uncertainties in the Right Ascension and Declination, in arcseconds. The combined position error, ERROR_RADIUS, is calculated from the errors of the image coordinates: sqrt(X_PIXEL_ERROR2+Y_PIXEL_ERROR2). For symmetric errors in both dimensions, ERROR_RADIUS/sqrt(2) is the one-dimensional 1-sigma position uncertainty, giving the coordinate interval that includes 68% of normally distributed data points, and sqrt(2.3/2)*ERROR_RADIUS is the two-dimensional error, giving the radius of a circularized ellipse that include 68% of normally distributed data points.

X_Pixel
X coordinate within the rebinned image. The position of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

X_Pixel_Error
1-sigma uncertainty in X coordinate within the rebinned image. The position error of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

Y_Pixel
Y coordinate within the rebinned image. The position of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

Y_Pixel_Error
1-sigma uncertainty in Y coordinate within the rebinned image. The position error of the source is the result of the simultaneous fit and considered to be the same for the stack and associated individual observations (in XMMSTACKOB).

Dist_NN
The distance to the nearest neighboring detection, in arcseconds.

N_Blend
The number of simultaneously fitted sources.

Name_4XMMDR12
The IAU source designation assigned to the nearest unique source in 4XMM-DR12.

Srcid_4XMMDR12
The unique source identifier of the nearest source in 4XMM-DR12 within the correlation radius. Two sources are associated if their separation is no larger than three times the sum of their position errors, which is assumed to be at least one arcsecond to account for systematic errors. The matching radius per source is therefore:

       rmatch = max (1", 3 x [ ERROR_RADIUS + ERROR_RADIUS_4XMMDR12 ])
  
A null value refers to the case where no counterpart is found.

RA_4XMMDR12
The mean right ascension of the 4XMM-DR12 source and its contributing detections after field rectifications.

Dec_4XMMDR12
The mean declination of the 4XMM-DR12 source and its contributing detections after field rectifications.

Error_Radius_4XMMDR12
The position error of the 4XMM-DR12 source and its contributing detections including statistical and systematic errors from the field rectifications.

Dist_4XMMDR12
The distance between the stacked source and the nearest unique source in 4XMM-DR12, in arcsec.

Ndetect_4XMMDR12
The number of DR12 detections of the nearest unique source in 4XMM-DR12.

EP_Flux
The weighted mean of the all-EPIC flux between 0.2 - 12.0 keV, in units of erg/s/cm2. This is the dead-time corrected count rates in the entire PSF, multiplied with the respective energy conversion factors (see Mateos et al., 2009, A&A, 496, 879). If the exposure is zero, for example on chip gaps, or if the covered PSF fraction is below 15%, this is set to "Null".

EP_Flux_Error
1-sigma uncertainty in weighted mean of the all-EPIC flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_1_Flux
The weighted mean of the EPIC band 1 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_1_Flux_Error
1-sigma uncertainty in weighted mean of the EPIC band 1 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_2_Flux
The weighted mean of the EPIC band 2 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_2_Flux_Error
1-sigma uncertainty in the weighted mean of the EPIC band 2 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_3_Flux
The weighted mean of the EPIC band 3 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_3_Flux_Error
1-sigma uncertainty in weighted mean of the EPIC band 3 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_4_Flux
The weighted mean of the EPIC band 4 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_4_Flux_Error
1-sigma uncertainty in weighted mean of the EPIC band 4 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_5_Flux
The weighted mean of the EPIC band 5 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_5_Flux_Error
1-sigma uncertainty in weighted mean of the EPIC band 5 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_Flux
The weighted mean of the total (over all energy bands) PN flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_Flux_Error
1-sigma uncertainty in weighted mean of the total (over all energy bands) PN flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_1_Flux
The weighted mean of the PN band 1 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_1_Flux_Error
1-sigma uncertainty in weighted mean of the PN band 1 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_2_Flux
The weighted mean of the PN band 2 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_2_Flux_Error
1-sigma uncertainty in the weighted mean of the PN band 2 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_3_Flux
The weighted mean of the PN band 3 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_3_Flux_Error
1-sigma uncertainty in the weighted mean of the PN band 3 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_4_Flux
The weighted mean of the PN band 4 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_4_Flux_Error
1-sigma uncertainty in the weighted mean of the PN band 4 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_5_Flux
The weighted mean of the PN band 5 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_5_Flux_Error
1-sigma uncertainty in weighted mean of the PN band 5 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_Flux
The weighted mean of the total (over all energy bands) MOS1 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_Flux_Error
1-sigma uncertainty in the weighted mean of the total (over all energy bands) MOS1 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_1_Flux
The weighted mean of the MOS1 band 1 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_1_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS1 band 1 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_2_Flux
The weighted mean of the MOS1 band 2 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_2_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS1 band 2 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_3_Flux
The weighted mean of the MOS1 band 3 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_3_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS1 band 3 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_4_Flux
The weighted mean of the MOS1 band 4 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_4_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS1 band 4 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_5_Flux
The weighted mean of the MOS1 band 5 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_5_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS1 band 5 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_Flux
The weighted mean of the total (over all energy bands) MOS2 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_Flux_Error
1-sigma uncertainty in the weighted mean of the total (sum of energy bands) MOS2 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_1_Flux
The weighted mean of the MOS2 band 1 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_1_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS2 band 1 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_2_Flux
The weighted mean of the MOS2 band 2 flux, in units of erg/s/cm2x. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_2_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS2 band 2 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_3_Flux
The weighted mean of the MOS2 band 3 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_3_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS2 band 3 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_4_Flux
The weighted mean of the MOS2 band 4 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_4_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS2 band 4 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_5_Flux
The weighted mean of the MOS2 band 5 flux, in units of erg/s/cm2. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_5_Flux_Error
1-sigma uncertainty in the weighted mean of the MOS2 band 5 flux, in units of erg/s/cm2. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_Rate
The all-EPIC count rate between 0.2 and 12.0 keV background-subtracted and vignetting-corrected in the entire PSF. This is the exposure-weighted mean of the count rates of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_Rate_Error
1-sigma uncertainty in the all-EPIC count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_Rate
The total (over all energy bands) PN count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_Rate_Error
1-sigma uncertainty in the total (sum of energy bands) PN count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_1_Rate
PN band 1 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_1_Rate_Error
1-sigma uncertainty in the PN band 1 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_2_Rate
PN band 2 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_2_Rate_Error
1-sigma uncertainty in the PN band 2 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_3_Rate
PN band 3 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_3_Rate_Error
1-sigma uncertainty in the PN band 3 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_4_Rate
PN band 4 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_4_Rate_Error
1-sigma uncertainty in the PN band 4 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_5_Rate
PN band 5 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_5_Rate_Error
1-sigma uncertainty in the PN band 5 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_Rate
The total (over all energy bands) MOS1 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_Rate_Error
1-sigma uncertainty in the total MOS1 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_1_Rate
The MOS1 band 1 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_1_Rate_Error
1-sigma uncertainty in MOS1 band 1 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_2_Rate
The MOS1 band 2 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_2_Rate_Error
1-sigma uncertainty in MOS1 band 2 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_3_Rate
The MOS1 band 3 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_3_Rate_Error
1-sigma uncertainty in MOS1 band 3 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_4_Rate
The MOS1 band 4 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_4_Rate_Error
1-sigma uncertainty in MOS1 band 4 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_5_Rate
The MOS1 band 5 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_5_Rate_Error
1-sigma uncertainty in MOS1 band 5 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_Rate
The total (over all energy bands) MOS2 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_Rate_Error
1-sigma uncertainty in the total MOS2 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_1_Rate
The MOS2 band 1 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_1_Rate_Error
1-sigma uncertainty in MOS2 band 1 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_2_Rate
The MOS2 band 2 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_2_Rate_Error
1-sigma uncertainty in MOS2 band 2 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_3_Rate
The MOS2 band 3 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_3_Rate_Error
1-sigma uncertainty in MOS2 band 3 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_4_Rate
The MOS2 band 4 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_4_Rate_Error
1-sigma uncertainty in MOS2 band 4 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_5_Rate
The MOS2 band 5 count rate. This is calculated from the exposure-weighted mean of the individual observations. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_5_Rate_Error
1-sigma uncertainty in MOS2 band 5 count rate. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_Cts
The all-EPIC background-subtracted source counts in the entire PSF. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_Cts_Error
1-sigma uncertainty in the all-EPIC count number. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_Cts
The total (over all energy bands) PN background-subtracted source counts in the entire PSF. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

PN_Cts_Error
1-sigma uncertainty in the total (over all energy bands) PN count number. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_Cts
The total MOS1 background-subtracted source counts in the entire PSF. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M1_Cts_Error
1-sigma uncertainty in the total MOS1 count number. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_Cts
The total MOS2 background-subtracted source counts in the entire PSF. A zero value with a non-zero error refers to case where no counts are detected in spite of sufficient PSF coverage. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

M2_Cts_Error
1-sigma uncertainty in the total MOS2 count number. A null value means that the exposure is zero or the covered PSF fraction is below 15%.

EP_Det_ML
The total EPIC equivalent maximum detection likelihood, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask.

PN_Det_ML
The total PN equivalent maximum detection likelihood, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the PN instrument.

PN_1_Det_ML
The equivalent maximum detection likelihood for PN band 1, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the PN instrument and energy band 1.

PN_2_Det_ML
The equivalent maximum detection likelihood for PN band 2, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the PN instrument and energy band 2.

PN_3_Det_ML
The equivalent maximum detection likelihood for PN band 3, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the PN instrument and energy band 3.

PN_4_Det_ML
The equivalent maximum detection likelihood for PN band 4, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the PN instrument and energy band 4.

PN_5_Det_ML
The equivalent maximum detection likelihood for PN band 5, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the PN instrument and energy band 5.

M1_Det_ML
The total MOS1 equivalent maximum detection likelihood, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS1 instrument.

M1_1_Det_ML
The equivalent maximum detection likelihood for MOS1 band 1, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS1 instrument and energy band 1.

M1_2_Det_ML
The equivalent maximum detection likelihood for MOS1 band 2, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS1 instrument and energy band 2.

M1_3_Det_ML
The equivalent maximum detection likelihood for MOS1 band 3, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS1 instrument and energy band 3.

M1_4_Det_ML
The equivalent maximum detection likelihood for MOS1 band 4, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS1 instrument and energy band 4.

M1_5_Det_ML
The equivalent maximum detection likelihood for MOS1 band 5, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS1 instrument and energy band 5.

M2_Det_ML
The total MOS2 equivalent maximum detection likelihood, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS2 instrument.

M2_1_Det_ML
The equivalent maximum detection likelihood for MOS2 band 1, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS2 instrument and energy band 1.

M2_2_Det_ML
The equivalent maximum detection likelihood for MOS2 band 2, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS2 instrument and energy band 2.

M2_3_Det_ML
The equivalent maximum detection likelihood for MOS2 band 3, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS2 instrument and energy band 3.

M2_4_Det_ML
The equivalent maximum detection likelihood for MOS2 band 4, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS2 instrument and energy band 4.

M2_5_Det_ML
The equivalent maximum detection likelihood for MOS2 band 5, normalized to two degrees of freedom. This is calculated from all the valid contributing images for which the source is inside the detection mask for the MOS2 instrument and energy band 5.

Extent
The source extent radius, in arcseconds, derived from the model source PSF convolved with a Beta profile. Below an extent of 6 arcsec, the source is considered unresolved and set to zero and the source is "point-like".

Extent_Error
1-sigma uncertainty in the source extent radius, in arcseconds. This is set to "Null", if the extent is below 6 arcsec.

Extent_ML
The likelihood that the source is extended with radius EXTENT. This is set to "Null" for a point-like source, i.e., if the extent is below 6 arcsec.

EP_HR1
Equivalent all-EPIC hardness ratio 1 (HR1). This is based on the mean of all active instruments. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

EP_HR1_Error
1-sigma uncertainty in the all-EPIC hardness ratio 1.

EP_HR2
Equivalent all-EPIC hardness ratio 2 (HR2). This is based on the mean of all active instruments. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

EP_HR2_Error
1-sigma uncertainty in the all-EPIC hardness ratio 2.

EP_HR3
Equivalent all-EPIC hardness ratio 3 (HR3). This is based on the mean of all active instruments. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

EP_HR3_Error
1-sigma uncertainty in the all-EPIC hardness ratio 3.

EP_HR4
Equivalent all-EPIC hardness ratio 4 (HR4). This is based on the mean of all active instruments. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

EP_HR4_Error
1-sigma uncertainty in the all-EPIC hardness ratio 4.

PN_HR1
PN hardness ratio 1 (HR1). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

PN_HR1_Error
1-sigma uncertainty in PN hardness ratio 1.

PN_HR2
PN hardness ratio 2 (HR2). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

PN_HR2_Error
1-sigma uncertainty in PN hardness ratio 2.

PN_HR3
PN hardness ratio 3 (HR3). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

PN_HR3_Error
1-sigma uncertainty in PN hardness ratio 3.

PN_HR4
PN hardness ratio 4 (HR4). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

PN_HR4_Error
1-sigma uncertainty in PN hardness ratio 4.

M1_HR1
The MOS1 hardness ratio 1 (HR1). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M1_HR1_Error
1-sigma uncertainty in MOS1 hardness ratio 1.

M1_HR2
The MOS1 hardness ratio 2 (HR2). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M1_HR2_Error
1-sigma uncertainty in MOS1 hardness ratio 2.

M1_HR3
The MOS1 hardness ratio 3 (HR3). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M1_HR3_Error
1-sigma uncertainty in MOS1 hardness ratio 3.

M1_HR4
The MOS1 hardness ratio 4 (HR4). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M1_HR4_Error
1-sigma uncertainty in MOS1 hardness ratio 4.

M2_HR1
The MOS2 hardness ratio 1 (HR1). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M2_HR1_Error
1-sigma uncertainty in MOS2 hardness ratio 1.

M2_HR2
The MOS2 hardness ratio 2 (HR2). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M2_HR2_Error
1-sigma uncertainty in MOS2 hardness ratio 2.

M2_HR3
The MOS2 hardness ratio 3 (HR3). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M2_HR3_Error
1-sigma uncertainty in MOS2 hardness ratio 3.

M2_HR4
MOS2 hardness ratio 4 (HR4). This is based on the mean of the observations. The hardness ratio is defined as the ratio of the two bands, H and S, as:

      HR=(H-S)/(H+S)

      HR1: bands 2 and 1
      HR2: bands 3 and 2
      HR3: bands 4 and 3
      HR4: bands 5 and 4
  

M2_HR4_Error
1-sigma uncertainty in MOS2 hardness ratio 4.

PN_Exposure
The total PN exposure map values (including vignetting effects) summed for all contributing images.

PN_1_Exposure
The total PN band 1 exposure map values (including vignetting effects) summed for all contributing images.

PN_2_Exposure
The total PN band 2 exposure map values (including vignetting effects) summed for all contributing images.

PN_3_Exposure
The total PN band 3 exposure map values (including vignetting effects) summed for all contributing images.

PN_4_Exposure
The total PN band 4 exposure map values (including vignetting effects) summed for all contributing images.

PN_5_Exposure
The total PN band 5 exposure map values (including vignetting effects) summed for all contributing images.

M1_Exposure
The total MOS1 exposure map values (including vignetting effects) summed for all contributing images.

M1_1_Exposure
The total MOS1 band 1 exposure map values (including vignetting effects) summed for all contributing images.

M1_2_Exposure
The total MOS1 band 2 exposure map values (including vignetting effects) summed for all contributing images.

M1_3_Exposure
The total MOS1 band 3 exposure map values (including vignetting effects) summed for all contributing images.

M1_4_Exposure
The total MOS1 band 4 exposure map values (including vignetting effects) summed for all contributing images.

M1_5_Exposure
The total MOS1 band 5 exposure map values (including vignetting effects) summed for all contributing images.

M2_Exposure
The total MOS2 exposure map values (including vignetting effects) summed for all contributing images.

M2_1_Exposure
The total MOS2 band 1 exposure map values (including vignetting effects) summed for all contributing images.

M2_2_Exposure
The total MOS2 band 2 exposure map values (including vignetting effects) summed for all contributing images.

M2_3_Exposure
The total MOS2 band 3 exposure map values (including vignetting effects) summed for all contributing images.

M2_4_Exposure
The total MOS2 band 4 exposure map values (including vignetting effects) summed for all contributing images.

M2_5_Exposure
The total MOS2 band 5 exposure map values (including vignetting effects) summed for all contributing images.

PN_Bg
The total PN background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

PN_1_Bg
PN band 1 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

PN_2_Bg
PN band 2 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

PN_3_Bg
PN band 3 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

PN_4_Bg
PN band 4 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

PN_5_Bg
PN band 5 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M1_Bg
The total MOS1 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M1_1_Bg
The MOS1 band 1 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M1_2_Bg
The MOS1 band 2 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M1_3_Bg
The MOS1 band 3 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M1_4_Bg
The MOS1 band 4 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M1_5_Bg
The MOS1 band 5 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M2_Bg
The total MOS2 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M2_1_Bg
The MOS2 band 1 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M2_2_Bg
The MOS2 band 2 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M2_3_Bg
The MOS2 band 3 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M2_4_Bg
The MOS2 band 4 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

M2_5_Bg
The MOS2 band 5 background model at the central position of the source on the CCD summed for all contributing images. This is set to "Null" if the exposure map is zero and if the center of the source is located on a bad chip area.

EP_Ontime
The total all-EPIC good exposure time, in seconds, at the central position of the source on the CCD. This is the sum of the maximum on-times of all the observations and set to zero if the center of the source is located on a bad chip area.

PN_Ontime
The total PN good exposure time, in seconds, at the central position of the source. The times are calculated by the SAS task evselect and are not vignetting corrected. This is the sum of the PN values and set to zero if the center of the source is location on a bad chip area.

M1_Ontime
The total MOS1 good exposure time, in seconds, at the central position of the source. The times are calculated by the SAS task evselect and are not vignetting corrected. This is the sum of the MOS1 values and set to zero if the center of the source is location on a bad chip area.

M2_Ontime
The total MOS2 good exposure time, in seconds, at the central position of the source. The times are calculated by the SAS task evselect and are not vignetting corrected. This is the sum of the MOS2 values and set to zero if the center of the source is location on a bad chip area.

PN_Pileup
The estimate of the pile-up level in EPIC/pn. A value below 1 corresponds to negligible pile-up (less than a few % flux loss) while values larger than 10 denote heavy pile-up.

M1_Pileup
The estimate of the pile-up level in EPIC/MOS1. A value below 1 corresponds to negligible pile-up (less than a few % flux loss) while values larger than 10 denote heavy pile-up.

M2_Pileup
The estimate of the pile-up level in EPIC/MOS2. A value below 1 corresponds to negligible pile-up (less than a few % flux loss) while values larger than 10 denote heavy pile-up.

PN_Maskfrac
The maximum mean chip coverage in the PN detection mask, weighted by the source PSF.

M1_Maskfrac
The maximum mean chip coverage in the MOS1 detection mask, weighted by the source PSF.

M2_Maskfrac
The maximum mean chip coverage in the MOS2 detection mask, weighted by the source PSF.

Dist_Ref
The distance to the reference coordinates of the field, in arcminutes.

Overlap_Flag
A flag which indicates whether or not the source is located in an area in which several observations overlap.

Stack_Flag
The summarized numeric quality flag of the detection, as follows:

      -1 = same as 1
       0 = all flags are false
       1 = at least one of the flags 1, 2, 3, 9 is true
       2 = at least one of the flags 4-8 is true, potentially a spurious source
       3 = STACK_FLAG is 2 in all contributing observations
      10 = no automatic flag but marked as probably spurious based on visual screening
      11 = at least one of the flags 1, 2, 3, 9 is true, based on automated flag, and was also marked as probably spurious based on visual screening
      12 = at least one of the flags 4-8 is true, based on automated flag, and was also marked as probably spurious based on visual screening
      13 = STACK_FLAG is 2 in all contributing observations, based on automated flag, and was also marked as probably spurious based on visual screening

      For more details about the quality flags, refer to Section 7.3 in Watson
      et al. (2009, A&A, 493, 339).
  

EP_Flag
The quality flags of the EPIC detection, combined into a 10-character string (refer to Watson et al., 2009, A&A, 493, 339). This used the worst flag of all observations. A "true" flag means a warning on the detection condition.

PN_Flag
The quality flags of the PN detection, combined into a 9-character string (refer to Watson et al., 2009, A&A, 493, 339). This used the worst flag of all observations. A "true" flag means a warning on the detection condition.

M1_Flag
The quality flags of the MOS1 detection, combined into a 9-character string (refer to Watson et al., 2009, A&A, 493, 339). This used the worst flag of all observations. A "true" flag means a warning on the detection condition.

M2_Flag
The quality flags of the MOS2 detection, combined into a 9-character string(refer to Watson et al., 2009, A&A, 493, 339). This used the worst flag of all observations. A "true" flag means a warning on the detection condition.

Var_Chi2
The reduced chi2 of the inter-observation flux variability in all contributing observations with valid non-zero fluxes.

Var_Chi2_1
The reduced chi2 of the inter-observation flux variability in energy band 1.

Var_Chi2_2
The reduced chi2 of the inter-observation flux variability in energy band 2.

Var_Chi2_3
The reduced chi2 of the inter-observation flux variability in energy band 3.

Var_Chi2_4
The reduced chi2 of the inter-observation flux variability in energy band 4.

Var_Chi2_5
The reduced chi2 of the inter-observation flux variability in energy band 5.

Var_Prob
The probability that fluxes are consistent with constant inter-observation flux. This is derived from VAR_CHI2. The smaller VAR_PROB is, the more likely the sources shows inter-observation flux variability.

Var_Prob_1
The probability that fluxes are constant in energy band 1. This is derived from VAR_CHI2_1. The smaller VAR_PROB is, the more likely the sources shows inter-observation flux variability.

Var_Prob_2
The probability that fluxes are constant in energy band 2. This is derived from VAR_CHI2_2. The smaller VAR_PROB is, the more likely the sources shows inter-observation flux variability.

Var_Prob_3
The probability that fluxes are constant in energy band 3. This is derived from VAR_CHI2_3. The smaller VAR_PROB is, the more likely the sources shows inter-observation flux variability.

Var_Prob_4
The probability that fluxes are constant in energy band 4. This is derived from VAR_CHI2_4. The smaller VAR_PROB is, the more likely the sources shows inter-observation flux variability.

Var_Prob_5
The probability that fluxes are constant in energy band 5. This is derived from VAR_CHI2_5. The smaller VAR_PROB is, the more likely the sources shows inter-observation flux variability.

FRatio
The ratio between the highest and the lowest (non-zero, non-null) mean flux.

FRatio_Error
1-sigma uncertainty in the flux ratio.

FRatio_1
The ratio between the highest and the lowest mean flux in energy band 1.

FRatio_1_Error
1-sigma uncertainty in the flux ratio for energy band 1.

FRatio_2
The ratio between the highest and the lowest mean flux in energy band 2.

FRatio_2_Error
1-sigma uncertainty in the flux ratio for energy band 2.

FRatio_3
The ratio between the highest and the lowest mean flux in energy band 3.

FRatio_3_Error
1-sigma uncertainty in the flux ratio for energy band 3.

FRatio_4
The ratio between the highest and the lowest mean flux in energy band 4.

FRatio_4_Error
1-sigma uncertainty in the flux ratio for energy band 4

FRatio_5
The ratio between the highest and the lowest mean flux in energy band 5.

FRatio_5_Error
1-sigma uncertainty in the flux ratio for energy band 5.

FluxVar
Largest difference between mean all-EPIC fluxes.

FluxVar_1
Largest difference between mean all-EPIC fluxes in energy band 1.

FluxVar_2
Largest difference between mean all-EPIC fluxes in energy band 2.

FluxVar_3
Largest difference between mean all-EPIC fluxes in energy band 3.

FluxVar_4
Largest difference between mean all-EPIC fluxes in energy band 4.

FluxVar_5
Largest difference between mean all-EPIC fluxes in energy band 5.

Chi2prob_4XMMDR12
The EPIC chi2 probability for constant flux of nearest 4XMM-DR12 source (the minimum of all contributing 4XMM-DR12 observations).

Fvar_4XMMDR12
The fractional variance of the nearest source in 4XMM-DR12 using the observation with minimum CHI2PROB.

Fvar_4XMMDR12_Error
The 1-sigma uncertainty in the fractional variance.

Var_Flag_4XMMDR12
The variability flag of the nearest unique source in 4XMM-DR12 using the observation with minimum CHI2PROB. If at least one exposure has CHI2PROB below 10-5, then the flag is set to "true."

Sum_Flag_4XMMDR12
The mean source summary quality flag for the nearest unique source in 4XMM-DR12, based on automatic and visual screening.

Sum_Flag_Min_4XMMDR12
The best quality flag of the detections for the nearest 4XMM-DR12 source.

Obs_First
The date/time of the first contributing observation.

Obs_Last
The date/time of the last contributing observation.

URL_4XMMDR12
This contains the URL of the web page with more information on the nearest unique source in 4XMM-DR12.


Contact Person

Questions regarding the XMMSTACK database table can be addressed to the HEASARC Help Desk.
Page Author: Browse Software Development Team
Last Modified: Thursday, 28-Jul-2022 16:20:07 EDT