This example shows how one can optimize point source detection for a set of observations that are almost entirely overlapping, such as three observations of the same target. It may not matter, but it is a good idea to run this from a window whose $SAS_CCF points to the CCF for the first observation.
# merge the attitude files for the three observations merge set1=0820840301/analysis/atthk.fits set2=0820840401/analysis/atthk.fits outset=atthk_temp.fits mergedifferentobs="yes" merge set1=atthk_temp.fits set2=0820840501/analysis/atthk.fits outset=atthk.fits mergedifferentobs="yes" rm atthk_temp.fits # Merge all of the mos1 event files merge mergedifferentobs="yes" set1=0820840301/analysis/mos1S001-allevc.fits set2=0820840401/analysis/mos1S001-allevc.fits outset=mos1_t1.fits merge set1=mos1_t1.fits set2=0820840501/analysis/mos1S001-allevc.fits outset=mos1_event.fits mergedifferentobs="yes" rm mos1_t?.fits # merge all of the mos2 event files merge mergedifferentobs="yes" set1=0820840301/analysis/mos2S002-allevc.fits set2=0820840401/analysis/mos2S002-allevc.fits outset=mos2_t1.fits mergedifferentobs="yes" merge set1=mos2_t1.fits set2=0820840501/analysis/mos2U002-allevc.fits outset=mos2_event.fits mergedifferentobs="yes" rm mos2_t?.fits # merge all of the pn event files merge set1=0820840301/analysis/pnS003-allevc.fits set2=0820840401/analysis/pnS003-allevc.fits outset=pn_t1.fits mergedifferentobs="yes" merge set1=pn_t1.fits set2=0820840501/analysis/pnS003-allevc.fits outset=pn_event.fits mergedifferentobs="yes" rm pn_t1.fits # merge all of the pn oot event files merge mergedifferentobs="yes" set1=0820840301/analysis/pnS003-allevcoot.fits set2=0820840401/analysis/pnS003-allevcoot.fits outset=pn_t1.fits merge set1=pn_t1.fits set2=0820840501/analysis/pnS003-allevcoot.fits outset=pn_oot_event.fits mergedifferentobs="yes" rm pn_t1.fits # now run cheese cheese mos1file=mos1_event.fits mos2file=mos2_event.fits pnfile=pn_event.fits pnootfile=pn_oot_event.fits elowlist=350 ehighlist=1100 scale=0.5 mlmin=10 ratetotal=0.2 dist=50. keepinterfiles=no -V 7 >& cheese.log # apply the results to the individual observations # (A demonstration just for the first obsid) cp emllist_fixd_filt.fits 0820840301/analysis/emllist_joint.fits cd 0820840301/analysis # building the region files and mask for MOS1 region eventset=${M1}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST expression="(ID_INST == 2)&&(DET_ML >= 10)" bkgregionset=${M1}-bkgregtdet.fits energyfraction=0.4 radiusstyle=contour outunit=detxy verbosity=4 region eventset=${M1}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST expression="(ID_INST == 2)&&(DET_ML >= 10)" bkgregionset=${M1}-bkgregtsky.fits energyfraction=0.4 radiusstyle=contour outunit=xy verbosity=4 makemask imagefile=${M1}-fovimt.fits maskfile=${M1}-fovimtmask.fits regionfile=${M1}-bkgregtsky.fits cheesefile=${M1}-cheeset.fits # building the region files and mask for MOS2 region eventset=${M2}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST expression="(ID_INST == 3)&&(DET_ML >= 10)" bkgregionset=${M2}-bkgregtdet.fits energyfraction=0.4 radiusstyle=contour outunit=detxy verbosity=4 region eventset=${M2}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST expression="(ID_INST == 3)&&(DET_ML >= 10)" bkgregionset=${M2}-bkgregtsky.fits energyfraction=0.4 radiusstyle=contour outunit=xy verbosity=4 makemask imagefile=${M2}-fovimt.fits maskfile=${M2}-fovimtmask.fits regionfile=${M2}-bkgregtsky.fits cheesefile=${M2}-cheeset.fits # building the region files and mask for PN region eventset=${PN}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST expression="(ID_INST == 1)&&(DET_ML >= 10)" bkgregionset=${PN}-bkgregtdet.fits energyfraction=0.4 radiusstyle=contour outunit=detxy verbosity=4 region eventset=${PN}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST expression="(ID_INST == 1)&&(DET_ML >= 10)" bkgregionset=${PN}$-bkgregtsky.fits energyfraction=0.4 radiusstyle=contour outunit=xy verbosity=4 makemask imagefile=${PN}-fovimt.fits maskfile=pnS003-fovimtmask.fits regionfile=${PN}-bkgregtsky.fits cheesefile=${PN}-cheeset.fits