This example shows how one can optimize point source detection for a set of observations that are almost entirely overlapping, such as three observations of the same target. It may not matter, but it is a good idea to run this from a window whose $SAS_CCF points to the CCF for the first observation.
# merge the attitude files for the three observations
merge set1=0820840301/analysis/atthk.fits set2=0820840401/analysis/atthk.fits outset=atthk_temp.fits
mergedifferentobs="yes"
merge set1=atthk_temp.fits set2=0820840501/analysis/atthk.fits outset=atthk.fits
mergedifferentobs="yes"
rm atthk_temp.fits
# Merge all of the mos1 event files
merge mergedifferentobs="yes" set1=0820840301/analysis/mos1S001-allevc.fits
set2=0820840401/analysis/mos1S001-allevc.fits outset=mos1_t1.fits
merge set1=mos1_t1.fits set2=0820840501/analysis/mos1S001-allevc.fits outset=mos1_event.fits
mergedifferentobs="yes"
rm mos1_t?.fits
# merge all of the mos2 event files
merge mergedifferentobs="yes" set1=0820840301/analysis/mos2S002-allevc.fits
set2=0820840401/analysis/mos2S002-allevc.fits outset=mos2_t1.fits mergedifferentobs="yes"
merge set1=mos2_t1.fits set2=0820840501/analysis/mos2U002-allevc.fits outset=mos2_event.fits
mergedifferentobs="yes"
rm mos2_t?.fits
# merge all of the pn event files
merge set1=0820840301/analysis/pnS003-allevc.fits set2=0820840401/analysis/pnS003-allevc.fits
outset=pn_t1.fits mergedifferentobs="yes"
merge set1=pn_t1.fits set2=0820840501/analysis/pnS003-allevc.fits outset=pn_event.fits
mergedifferentobs="yes"
rm pn_t1.fits
# merge all of the pn oot event files
merge mergedifferentobs="yes" set1=0820840301/analysis/pnS003-allevcoot.fits
set2=0820840401/analysis/pnS003-allevcoot.fits outset=pn_t1.fits
merge set1=pn_t1.fits set2=0820840501/analysis/pnS003-allevcoot.fits outset=pn_oot_event.fits
mergedifferentobs="yes"
rm pn_t1.fits
# now run cheese
cheese mos1file=mos1_event.fits mos2file=mos2_event.fits pnfile=pn_event.fits
pnootfile=pn_oot_event.fits elowlist=350 ehighlist=1100 scale=0.5 mlmin=10 ratetotal=0.2
dist=50. keepinterfiles=no -V 7 >& cheese.log
# apply the results to the individual observations
# (A demonstration just for the first obsid)
cp emllist_fixd_filt.fits 0820840301/analysis/emllist_joint.fits
cd 0820840301/analysis
# building the region files and mask for MOS1
region eventset=${M1}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST
expression="(ID_INST == 2)&&(DET_ML >= 10)" bkgregionset=${M1}-bkgregtdet.fits
energyfraction=0.4 radiusstyle=contour outunit=detxy verbosity=4
region eventset=${M1}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST
expression="(ID_INST == 2)&&(DET_ML >= 10)" bkgregionset=${M1}-bkgregtsky.fits
energyfraction=0.4 radiusstyle=contour outunit=xy verbosity=4
makemask imagefile=${M1}-fovimt.fits maskfile=${M1}-fovimtmask.fits regionfile=${M1}-bkgregtsky.fits
cheesefile=${M1}-cheeset.fits
# building the region files and mask for MOS2
region eventset=${M2}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST
expression="(ID_INST == 3)&&(DET_ML >= 10)" bkgregionset=${M2}-bkgregtdet.fits
energyfraction=0.4 radiusstyle=contour outunit=detxy verbosity=4
region eventset=${M2}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST
expression="(ID_INST == 3)&&(DET_ML >= 10)" bkgregionset=${M2}-bkgregtsky.fits
energyfraction=0.4 radiusstyle=contour outunit=xy verbosity=4
makemask imagefile=${M2}-fovimt.fits maskfile=${M2}-fovimtmask.fits regionfile=${M2}-bkgregtsky.fits
cheesefile=${M2}-cheeset.fits
# building the region files and mask for PN
region eventset=${PN}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST
expression="(ID_INST == 1)&&(DET_ML >= 10)" bkgregionset=${PN}-bkgregtdet.fits
energyfraction=0.4 radiusstyle=contour outunit=detxy verbosity=4
region eventset=${PN}-allevc.fits operationstyle=global srclisttab=emllist_joint.fits:SRCLIST
expression="(ID_INST == 1)&&(DET_ML >= 10)" bkgregionset=${PN}$-bkgregtsky.fits
energyfraction=0.4 radiusstyle=contour outunit=xy verbosity=4
makemask imagefile=${PN}-fovimt.fits maskfile=pnS003-fovimtmask.fits
regionfile=${PN}-bkgregtsky.fits cheesefile=${PN}-cheeset.fits