pexmon: neutral Compton reflection with self-consistent Fe and Ni lines.

This model from Nandra et al. (2007) combines pexrav with self-consistently generated Fe K$\alpha$, Fe K$\beta$, Ni K$\alpha$ and the Fe K$\alpha$ Compton shoulder. Line strengths are based on Monte Carlo calculations by George & Fabian (1991) which are parametrized for $1.1 < \gamma < 2.5$ by :

EW = 9.66 EW_0(\gamma^{-2.8} - 0.56)

with inclination dependence for $i < 85$ degrees :

EW = EW_0 (2.20 \cos i - 1.749 (\cos i)^2 + 0.541(\cos i)^3)

and abundance dependence :

\log EW = \log EW_0 (0.0641 \log A_{Fe} - 0.172 (\log A_{Fe})^2)

The Fe K$\beta$ and Ni K$\alpha$ line fluxes are 11.3% and 5% respectively of that for Fe K$\alpha$. The Fe K$\alpha$ Compton shoulder is approximated as a gaussian with E = 6.315 keV and $\sigma = 0.035$ keV. The inclination dependence is taken from Matt (2002) such that :

EW_{shoulder} = EW_{Fe K\alpha}(0.1 + 0.1 \cos i)

The model parameters are :

par1 $\gamma$, power-law photon index, $N_E \propto E^{-\gamma}$.
par2 $E_c$, cutoff energy in keV (if $E_c$ = 0 there is no cutoff).
par3 scale, the scaling factor for reflection; <0 = no direct component, 1 = isotropic source above the disk
par4 $z$, redshift
par5 $A$, abundance of elements heavier than He relative to Solar.
par6 $A_{fe}$, iron abundance relative to Solar.
par7 the inclination angle (degrees).
norm normalization is the photon flux at 1 keV (photons/keV/cm$^2$/s) of the cutoff power law only (without reflection) and in the Earth frame.

HEASARC Home | Observatories | Archive | Calibration | Software | Tools | Students/Teachers/Public

Last modified: Tuesday, 28-May-2024 10:09:22 EDT