NOTICE:

This Legacy journal article was published in Volume 1, May 1992, and has not been updated since publication. Please use the search facility above to find regularly-updated information about this topic elsewhere on the HEASARC site.

SSS - The Einstein Solid State

Spectrometer Database at the HEASARC

Steve Drake, Keith Arnaud, and Nick White

HEASARC


Overview

This article describes how to use BROWSE to access the Einstein Observatory Solid State Spectrometer (SSS) catalog of observations and data products that is available in the HEASARC database. It also gives an example of using XSPEC to model the SSS spectrum of one of the objects observed by the SSS. For a description of the instrument and an improved ice model, see the accompanying article on the SSS calibration by Christian, Swank, Szymkowiak and White.

SSS Data Products Available in the HEASARC Database

There are 632 distinct SSS observations in the database. Each observation generally consists of a small number of segments that have been concatenated to improve the signal-to-noise. If a target was observed with the SSS over an interval containing more than one calendar (UT) day, the usual procedure was to create a different observation for the data accumulated on that target for each day. The spectra are not background-subtracted. Detector response matrices and background spectra are made using the VIMAT program, or from within BROWSE using the XSPEC command. There is a background-subtracted 81.92 second time resolution light curve in the 1.0-4.0 keV band covering the time interval of each spectrum.

In addition to the primary SSS data products, there are also some associated data products in the SSS database, namely near-simultaneous data obtained by the Einstein Monitor Proportional Counter (MPC). The MPC operated in the 1-15 keV band, with eight pulse height channels. It was a mechanically collimated detector with a full width half maximum field of view of 45 arc minutes. There is one MPC spectrum (accumulated over roughly the same time interval as the SSS observation and at times when the satellite was pointing at the SSS target) to match each SSS spectrum, with a small number (29/632) of exceptions where there were no valid MPC data. The MPC spectra are background-subtracted. There is one MPC detector response matrix for the entire mission, which can be extracted using the VIMAT program. In addition, there are also background-subtracted 40.96 second time resolution MPC light curves in the 1.0-15.0 keV band for this same time interval. Notice that, due to the differing instrumental observing constraints and particle background thresholds, the SSS and MPC data products are only quasi-simultaneous. The start and stop times referred to in the parameters description refer specifically to the SSS observations.

Data Selection

Users can select SSS data products using a variety of keys, including target name, spatial coordinates, time of observation, and class. Searches by name (sn) are always risky, since most targets will be known under a variety of aliases, and the user might find a null result because either there was no SSS observation of the object in question or because he used a different name for the object than is used in the database. We have tried to select the most commonly used name for each object in the SSS database since the original naming convention for the SSS targets was fairly arbitrary and not completely self-consistent, but this of course is somewhat subjective. Note that the names in the database are concatenated (i.e., embedded blanks have been removed, e.g., Cyg X-1 for Cyg X-1).

Using coordinate searches (e.g., the sc command) is always the most reliable search method. Since the field of view of the SSS was small (6' in diameter) the radius of the search cone should be adjusted accordingly. Notice also that the FOV of the MPC was 45' and thus in some cases the dominant X-ray source in the MPC FOV may lie outside the SSS FOV.

Other database parameters can be searched on using the sp command:

(a) Time: This is the start time of the observation in format "Year.Day".

(b) Type: This is a classification made by Jean Swank and Damian Christian as
to the nature of the source. The following types have been defined:
'bes' 		X-ray binary with Be star primary, e.g., Gam Cas.
'blk' 		X-ray binary with black hole primary, e.g., Cyg X-1.
'cluster' 	Cluster of galaxies, e.g., A 2029.
'cvs'		Cataclysmic variable, e.g., AM Her.
'gal' 		Galaxy or quasar, e.g., 3C273.
'lmxb' 		Low-mass X-ray binary, e.g., Cyg X-2.
'pulsar' 	Pulsar, e.g., Cen X-3.
'rscvn' 	RS CVn active binary system, e.g., AR Lac.
'snr' 		Supernova remnant, e.g., sn 1006.
'star' 		Miscellaneous varieties of galactic stars not belonging to the 
		other stellar categories, e.g., tau Sco.
'mispoint'	Observations made at incorrect coordinates.
(c) Class: This is the HEASARC BROWSE Classification of the target.

(The BROWSE classification scheme is described in detail in the HEASARC document 'Available Databases').

Example of accessing SSS data using BROWSE and XSPEC

Log on to NDADSA in the usual way (see the accompanying article on the HEASARC On-line Service). User inputs are preceded by > or :, our comments by !!, and everything else is output of BROWSE program. Due to changes in the models in the XSPEC program, the actual numerical results given here may not be precisely reproducible.

HEASARC > browse sss

!! Now try and see if our favorite active star AR Lac was observed by the SSS.

SSS_TOTAL_DEC > sn arlac

!! Notice the name of AR Lac is concatenated. Searches by name are always risky; it is usually safer to search in a cone (sc)

!! about a known position.

     name         seq   time     expos  count ice   delt   ra        dec
   (target)       (#) (yr/day)   (s)     rate       -ice  (1950)     (1950)
   1 ARLAC        1740 78/335    901     0.9  3.52  0.00 22 06 38.0  45 29 46
   2 ARLAC        1740 78/337    819     0.1  3.62  0.00 22 06 38.0  45 29 46
   3 ARLAC        1740 78/338    819     0.8  0.69  0.12 22 06 38.0  45 29 46
   4 ARLAC        1740 79/147   8192     0.7  1.31  0.01 22 06 38.0  45 29 46
   5 ARLAC        1740 79/146   9666     0.5  1.23  0.02 22 06 38.0  45 29 46
   6 ARLAC        1740 78/339    737     0.4  2.38  0.00 22 06 38.0  45 29 46
!! BROWSE found 6 observations: let's pick the longest one to examine.

SSS_TOTAL_NAM 6> dall 5

!! This lists all available parameters for the specific observation.

 NAME                            ARLAC
 TIME                            1979/146 12:52
 STOP TIME                       1979/146 18: 9
 YEAR                             1979
 EXPOSURE TIME                         9666
 RA                            (1950) 22 06 38.0
 DEC                           (1950) 45 29 46.0
 LII                              95.55381011962891
 BII                             -8.299847602844238
 TYPE                            rscvn
 FILE NAME                       sarlace
 COUNT RATE                      0.4780000
 COUNT RATE ERROR                8.0000004E-03
 COMMENT                          323 28 29 30 31 32 33
 ICE START                        1.232168
 ICE STOP                         1.254181
 DELTA ICE                       1.7865416E-02
 FLUX                            0.0000000E+00
 MIN COUNT RATE                  7.0000002E-03
 MIN COUNT RATE ERROR            4.6000000E-02
 MAX COUNT RATE                  0.8050000
 MAX COUNT RATE ERROR            0.1060000
 TCHI2                            1.760000
 SEQUENCE NUMBER                  1740
 REFS                            
 FILE SPECTRUM                   sarlace   
 FILE LCURVE                     sarlace   
 CLASS                            1900
 SPARE                           
 ASSOCIATED FILE LIGHTCURVE      arlace    
 ASSOCIATED FILE SPECTRUM        arlace    
SSS_TOTAL_NAM 6> cpd /te
!! This command sets the current plot device to be a Tektronix plot. Use your own plot device here; cpd ? gives a list of the available devices.

SSS_TOTAL_NAM 6> pp/sp 5

!! First plot the spectrum of this observation.

Plotting to /te

File sarlace.pha in current directory

!! Now plot the sss and mpc light-curves of this observation.

SSS_TOTAL_NAM 6> pp/li/asli 5

Plotting to /te

Figure 1

!! Notice that the SSS observations (top light curve) consists of 4 separate segments spread over some five hours. Also notice
!! that the associated MPC light curve (bottom light curve) is only 'quasi-simultaneous'; some time intervals there are truly
!! simultaneous data from both detectors, while at other times there may only be good data from one of them (or neither!).
!!
!! If you want to know what other RS CVn stars have been observed, use the BROWSE command "rscvn" (which is an alias
!! for sp class 1900 1909).

SSS_TOTAL_NAM 6> rscvn

!! or

SSS_TOTAL_NAM 6> sp

Enter indexed parameter name (or ?, or exit): class
Enter minimum numeric value: 1900
Enter maximum numeric value: 1909

    34
   1 HR1099       3620 79/223   6062     1.4  0.92  0.04 03 34 13.0  00 25 29
   2 ARLAC        1740 78/338    819     0.8  0.69  0.12 22 06 38.0  45 29 46
   3 RSCVN        1741 78/338   1474     0.2  1.05  0.07 13 08 18.0  36 12 00
   4 RSCVN        1741 79/152   2785     0.2  0.69  0.23 13 08 18.0  36 12 00
   5 ARLAC        1740 79/146   9666     0.5  1.23  0.02 22 06 38.0  45 29 46
   6 HKLAC        1747 79/156   1884     0.2  1.22  0.00 22 02 57.0  46 59 27
   7 ARLAC        1740 78/335    901     0.9  3.52  0.00 22 06 38.0  45 29 46
   .
   .
   .
  33 HR1099       3620 79/032    737     0.6  1.79  0.00 03 34 13.0  00 25 29
  34 ALPAUR       1726 79/061   7618     0.6  1.78  0.01 05 12 59.0  45 56 58
  34 entries retrieved
!! To do a detailed spectral analysis of one of these spectra, let's say the AR Lac observation that is entry 5 above,
!! we now spawn XSPEC from BROWSE.

SSS_TOTAL_CLA 34 > xspec/int 5
xspec 13:02:55 16-JAN-92
XSPEC> his SARLACE.XHS
XSPEC> data SARLACE.PHA;1

 Net count rate (cts/cm2/s) for file   1  3.8270E-03+/-  5.7325E-05( 83.6% total)
 Net correction flux for file  1=    9.5879E-04
 Command not found; type ? for a command listing
XSPEC> ignore bad
 File  1 Ignored channels    1 to    1
 File  1 Ignored channels   86 to   94
XSPEC> show
 Log file : LOG.LOG
 History file : USR:[DRAKE]SARLACE.XHS;1
 
 Information for file   1
  belonging to plot group   1, data group   1, det id = EINSTEIN SSS
  Current data file: USR:[DRAKE]SARLACE.PHA;1
  Background file  :USR:[DRAKE]SARLACE.BCK;1
  Correction file  :USR:[DRAKE]SARLACE.COR;1 with norm  0.0000
  Response file    : USR:[DRAKE]SARLACE.RSP;1
  Noticed channels   2 to   85
  File observed count rate    3.7036E-03+/-5.59956E-05 cts/cm^2/s
                              0.6667    +/-1.00792E-02 cts/s
  After correction of   0.0000E+00;  Model predicted rate:  0.0000E+00
XSPEC> p
!! This will plot the pha spectrum.

XSPEC> model raymond raymond wabs

!! RS CVn spectra generally require at least 2 thermal components to be well fit. In this example, we are going to fit the
!! observed spectrum using 2 Raymond and Smith thermal plasmas plus interstellar absorption.

 Input parameter value, delta, min, bot, top, and max values for ...
 Fit parameter  1 of component  1  1 raymond  kT(keV)
    1.000      1.0000E-02  8.0800E-03  8.0800E-03   79.90       79.90
 2.0
 Fit parameter  2 of component  1  2 raymond  Abundanc
    1.000     -1.0000E-03  0.0000E+00  0.0000E+00   5.000       5.000
 1
 Fit parameter  3 of component  1  3 raymond  Redshift
   0.0000E+00 -1.0000E-03  0.0000E+00  0.0000E+00   2.000       2.000
 0
 Fit parameter  4 of component  1  0 raymond  norm
    1.000      1.0000E-03  0.0000E+00  0.0000E+00  1.0000E+05  1.0000E+06
 1
 Fit parameter  5 of component  2  1 raymond  kT(keV)
    1.000      1.0000E-02  8.0800E-03  8.0800E-03   79.90       79.90
 0.5
 Fit parameter  6 of component  2  2 raymond  Abundanc
    1.000     -1.0000E-03  0.0000E+00  0.0000E+00   5.000       5.000
 1
 Fit parameter  7 of component  2  3 raymond  Redshift
   0.0000E+00 -1.0000E-03  0.0000E+00  0.0000E+00   2.000       2.000
 0
 Fit parameter  8 of component  2  0 raymond  norm
    1.000      1.0000E-03  0.0000E+00  0.0000E+00  1.0000E+05  1.0000E+06
 1
 Fit parameter  9 of component  3  1 wabs     nH 10^22
    1.000      1.0000E-03  0.0000E+00  0.0000E+00  1.0000E+05  1.0000E+06
 1.0e-3
 Summary of model parameters
  Model  Fit  Model   Component         Parameter   Value   Flag
  par    par  comp  index    type
    1     1     1     1     raymond     kT(keV)    2.00000    *
    2     2     1     2     raymond     Abundanc   1.00000
    3     3     1     3     raymond     Redshift  0.000000E+00
    4     4     1     0     raymond     norm       1.00000    *
    5     5     2     1     raymond     kT(keV)   0.500000    *
    6     6     2     2     raymond     Abundanc   1.00000
    7     7     2     3     raymond     Redshift  0.000000E+00
    8     8     2     0     raymond     norm       1.00000    *
    9     9     3     1     wabs        nH 10^22  1.000000E-03*
    5 variable fit parameters
 Current statistic=    5.1256E+07 using    84 PHA bins.
!! Try and fit the AR Lac spectrum with the above model.

XSPEC> fit 100

 RENORM: renorm =    8.5087E-03
 Chi-squared  Lvl  Fit param # 1     2           3           4
                 5           6           7           8           9
 Fit parameter   9 has pegged
   352.17     -2      2.766       1.000      0.0000E+00  1.8242E-02
              0.5588       1.000      0.0000E+00  4.2370E-03  0.0000E+00
   285.31     -3      2.934       1.000      0.0000E+00  1.7926E-02
              0.6706       1.000      0.0000E+00  5.2860E-03  0.0000E+00
   259.40     -4      3.619       1.000      0.0000E+00  1.6394E-02
              0.7070       1.000      0.0000E+00  6.7262E-03  0.0000E+00
   258.66     -5      3.963       1.000      0.0000E+00  1.6186E-02
              0.7082       1.000      0.0000E+00  6.8234E-03  0.0000E+00
   258.54     -6      4.314       1.000      0.0000E+00  1.6080E-02
              0.7117       1.000      0.0000E+00  6.8961E-03  0.0000E+00
   256.69     -7      4.450       1.000      0.0000E+00  1.5883E-02
              0.7220       1.000      0.0000E+00  7.0421E-03  0.0000E+00
   252.22     -8      5.428       1.000      0.0000E+00  1.4463E-02
              0.7819       1.000      0.0000E+00  8.3123E-03  0.0000E+00
   250.67     -9      6.756       1.000      0.0000E+00  1.4649E-02
              0.7752       1.000      0.0000E+00  8.4332E-03  0.0000E+00
   250.65    -10      6.682       1.000      0.0000E+00  1.4670E-02
              0.7737       1.000      0.0000E+00  8.3730E-03  0.0000E+00
   250.65    -11      6.681       1.000      0.0000E+00  1.4670E-02
              0.7737       1.000      0.0000E+00  8.3727E-03  0.0000E+00
 Unpegged  1 parameters
   250.65      1      6.681       1.000      0.0000E+00  1.4670E-02
              0.7737       1.000      0.0000E+00  8.3726E-03  0.0000E+00
    1         1    1  raymond     kT(keV)    6.68079     +/-  1.4447
    2         1    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    3         1    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    4         1    0  raymond     norm      0.146701E-01 +/- 0.44039E-03
    5         2    1  raymond     kT(keV)   0.773705     +/- 0.96893E-02
    6         2    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    7         2    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    8         2    0  raymond     norm      0.837261E-02 +/- 0.20744E-03
    9         3    1  wabs        nH 10^22  0.000000E+00 +/- 0.11808E-01
 Current statistic=     250.6     using    84 PHA bins.
XSPEC> p

!! Notice from the plot (which shows both the data and the latest model spectrum) and the poor chi2 statistic that this is
!! a less than adequate fit, particularly in the higher channels.

XSPEC> recor

!! The recornrm command is used to renormalize the background correction spectrum by a single multiplicative factor.
!! The final value of this correction should be between 0 and ~1.2; if the correction lies outside this range of values, the
!! renormalization can be manually reset to a specified value using the cornorm command. Alternatively, the user might
!! evaluate the quality of the data and/or the applicability of the adopted model and, if necessary, restart with a different
!!model.

  File #     Correction
      1      0.4263 +/-  0.0497
 After correction norm adjustment  0.426 +/- 0.050   Chisquared =   177.05
!! Notice the resultant improvement in the chi2 statistic. Now repeat the model fitting procedure. XSPEC> fit 100
 RENORM: renorm =    0.9176
 Chi-squared  Lvl  Fit param # 1     2           3           4
                 5           6           7           8           9
 Fit parameter   9 has pegged
   146.67      0      5.820       1.000      0.0000E+00  1.3202E-02
              0.7777       1.000      0.0000E+00  7.6068E-03  0.0000E+00
   144.83     -1      4.791       1.000      0.0000E+00  1.2992E-02
              0.7750       1.000      0.0000E+00  7.7216E-03  0.0000E+00
   144.81     -2      4.710       1.000      0.0000E+00  1.2912E-02
              0.7762       1.000      0.0000E+00  7.7649E-03  0.0000E+00
   144.78     -3      4.625       1.000      0.0000E+00  1.2919E-02
              0.7758       1.000      0.0000E+00  7.7489E-03  0.0000E+00
   144.75     -4      4.460       1.000      0.0000E+00  1.3018E-02
              0.7738       1.000      0.0000E+00  7.6718E-03  0.0000E+00
   144.75     -5      4.461       1.000      0.0000E+00  1.3018E-02
              0.7738       1.000      0.0000E+00  7.6717E-03  0.0000E+00
 Unpegged  1 parameters
   144.75      1      4.461       1.000      0.0000E+00  1.3018E-02
              0.7738       1.000      0.0000E+00  7.6717E-03  0.0000E+00
    1         1    1  raymond     kT(keV)    4.46068     +/- 0.72606
    2         1    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    3         1    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    4         1    0  raymond     norm      0.130184E-01 +/- 0.43194E-03
    5         2    1  raymond     kT(keV)   0.773822     +/- 0.10575E-01
    6         2    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    7         2    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    8         2    0  raymond     norm      0.767169E-02 +/- 0.20749E-03
    9         3    1  wabs        nH 10^22  0.000000E+00 +/- 0.12717E-01
 Current statistic=     144.7     using    84 PHA bins.
XSPEC> p

!! Again notice the improvement in the chi2 statistic. The fit is now much improved compared to the previous iteration.
!! Now do another recor.

XSPEC> recor

  File #     Correction
      1      0.6148 +/-  0.0497
 After correction norm adjustment  1.442 +/- 0.117   Chisquared =   130.37
!! Notice that the chi2 value is better. Also, that the improvements are getting smaller, i.e., the process appears to be
!!converging. Now do another couple of iterations of this 2-step process. But first, notice that the interstellar column
!! density keeps pegging out at zero. Let us drop the wabs parameter from the model.

XSPEC> model raymond raymond

 Input parameter value, delta, min, bot, top, and max values for ...
 Fit parameter  1 of component  1  1 raymond  kT(keV)
    1.000      1.0000E-02  8.0800E-03  8.0800E-03   79.90       79.90
 4.5
 Fit parameter  2 of component  1  2 raymond  Abundanc
    1.000     -1.0000E-03  0.0000E+00  0.0000E+00   5.000       5.000
 1
 Fit parameter  3 of component  1  3 raymond  Redshift
   0.0000E+00 -1.0000E-03  0.0000E+00  0.0000E+00   2.000       2.000
 0
 Fit parameter  4 of component  1  0 raymond  norm
    1.000      1.0000E-03  0.0000E+00  0.0000E+00  1.0000E+05  1.0000E+06
 0.013
 Fit parameter  5 of component  2  1 raymond  kT(keV)
    1.000      1.0000E-02  8.0800E-03  8.0800E-03   79.90       79.90
 0.77
 Fit parameter  6 of component  2  2 raymond  Abundanc
    1.000     -1.0000E-03  0.0000E+00  0.0000E+00   5.000       5.000
 1
 Fit parameter  7 of component  2  3 raymond  Redshift
   0.0000E+00 -1.0000E-03  0.0000E+00  0.0000E+00   2.000       2.000
 0
 Fit parameter  8 of component  2  0 raymond  norm
    1.000      1.0000E-03  0.0000E+00  0.0000E+00  1.0000E+05  1.0000E+06
 0.008
 Summary of model parameters
  Model  Fit  Model   Component         Parameter   Value   Flag
  par    par  comp  index    type
    1     1     1     1     raymond     kT(keV)    4.50000    *
    2     2     1     2     raymond     Abundanc   1.00000
    3     3     1     3     raymond     Redshift  0.000000E+00
    4     4     1     0     raymond     norm      1.300000E-02*
    5     5     2     1     raymond     kT(keV)   0.770000    *
    6     6     2     2     raymond     Abundanc   1.00000
    7     7     2     3     raymond     Redshift  0.000000E+00
    8     8     2     0     raymond     norm      8.000000E-03*
    4 variable fit parameters
 Current statistic=     140.6     using    84 PHA bins.
XSPEC> fit 100
 RENORM: renorm =    0.9362
 Chi-squared  Lvl  Fit param # 1     2           3           4
                 5           6           7           8
   124.11     -3      3.903       1.000      0.0000E+00  1.2378E-02
              0.7743       1.000      0.0000E+00  7.3899E-03
   124.11     -4      3.912       1.000      0.0000E+00  1.2380E-02
              0.7743       1.000      0.0000E+00  7.3887E-03
    1         1    1  raymond     kT(keV)    3.91151     +/- 0.69366
    2         1    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    3         1    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    4         1    0  raymond     norm      0.123800E-01 +/- 0.43144E-03
    5         2    1  raymond     kT(keV)   0.774349     +/- 0.10978E-01
    6         2    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    7         2    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    8         2    0  raymond     norm      0.738867E-02 +/- 0.20767E-03
 Current statistic=     124.1     using    84 PHA bins.
XSPEC> recor
  File #     Correction
      1      0.6968 +/-  0.0497
 After correction norm adjustment  1.133 +/- 0.081   Chisquared =   121.38
XSPEC> fit 100
 RENORM: renorm =    0.9823
 Chi-squared  Lvl  Fit param # 1     2           3           4
                 5           6           7           8
   120.21     -3      3.656       1.000      0.0000E+00  1.2102E-02
              0.7746       1.000      0.0000E+00  7.2654E-03
   120.20     -4      3.703       1.000      0.0000E+00  1.2085E-02
              0.7750       1.000      0.0000E+00  7.2808E-03
    1         1    1  raymond     kT(keV)    3.70303     +/- 0.45840
    2         1    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    3         1    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    4         1    0  raymond     norm      0.120845E-01 +/- 0.43102E-03
    5         2    1  raymond     kT(keV)   0.774994     +/- 0.11166E-01
    6         2    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    7         2    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    8         2    0  raymond     norm      0.728075E-02 +/- 0.20777E-03
 Current statistic=     120.2     using    84 PHA bins.
XSPEC> recor
  File #     Correction
      1      0.7322 +/-  0.0497
 After correction norm adjustment  1.051 +/- 0.071   Chisquared =   119.69
XSPEC> fit 100
 RENORM: renorm =    0.9922
 Chi-squared  Lvl  Fit param # 1     2           3           4
                 5           6           7           8
   119.47     -3      3.632       1.000      0.0000E+00  1.1963E-02
              0.7750       1.000      0.0000E+00  7.2274E-03
   119.47     -1      3.632       1.000      0.0000E+00  1.1963E-02
              0.7750       1.000      0.0000E+00  7.2274E-03
    1         1    1  raymond     kT(keV)    3.63231     +/- 0.46753
    2         1    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    3         1    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    4         1    0  raymond     norm      0.119630E-01 +/- 0.43095E-03
    5         2    1  raymond     kT(keV)   0.775031     +/- 0.11225E-01
    6         2    2  raymond     Abundanc   1.00000     +/- 0.00000E+00
    7         2    3  raymond     Redshift  0.000000E+00 +/- 0.00000E+00
    8         2    0  raymond     norm      0.722745E-02 +/- 0.20793E-03
 Current statistic=     119.5     using    84 PHA bins.
XSPEC> recor

File # Correction 1 0.7475 +/- 0.0497 After correction norm adjustment 1.021 +/- 0.068 Chisquared = 119.38 XSPEC> p

!! The fit is now fairly respectable. I have had enough, although purists may want to converge even further.

XSPEC> cpd /ps

!! This sets my plot device so that the next time I plot a spectrum, it will create a ps file that I can print as a PostScript
!! plot on my PostScript printer. This final plot of the data together with the best-fit spectrum is shown below. Notice
!!that the final fit looks reasonable and has an acceptable chi2.

Figure 2

XSPEC> p
XSPEC> exit
Do you really want to exit (y) y
XSPEC: quit

!! This gives a flavor of how one might go about analyzing SSS spectra. The particular models that are available in
!! XSPEC are discussed in the XSPEC User's Guide and in the on-line HELP facility. The major points that the novice
!! should remember are that, unless you really know what you are doing, tell XSPEC to ignore the bad channels in its
!! model fits, and that successful fitting is generally an iterative process involving a number of repeats of fit and recor.
!! At present, if you want to do simultaneous SSS and MPC spectra modeling, you have to enter XSPEC in its
!! stand-alone mode rather than interactively from BROWSE as in the above example. To do this, one has to extract
!! the desired data products while in BROWSE, using the xp command.

SSS_TOTAL_CLA 34> xp/sp/assp 34
   Extracting spectrum: 0.5-4.5 keV >> scapellaa.pha
   Extracting associated spectrum: MPC spectra >> capellaa.pha
SSS_TOTAL_CLA 34> xp/li/asli 34
   Extracting associated lightcurve: MPC spectra >> capellaa.rbf
   Extracting lightcurve: 0.5-4.5 keV >> scapellaa.rbf

!! Extract SSS and MPC spectra and lightcurves for the Alf Aur (Capella) observation on Day 61 of 1979.

SSS_TOTAL_CLA 34> exit

!! This ends the BROWSE session. In order to do detailed spectral analysis, one must create background, correction
!! (instrument-dependent), and response matrix files .BCK, .COR, and .RSP using VIMAT. Suppose we want to
!! model the SSS and MPC spectrum of Capella that we extracted using BROWSE as files SCAPELLAA.PHA
!! and CAPELLAA.PHA, respectively. We must next type:

> vimat scapellaa
> vimat capellaa

!! and this will create the needed files for us. Now type XSPEC:

xspec 13:09:55 9-JAN-92
XSPEC> log

!! This makes a log file of the present XSPEC session. Notice that BROWSE makes a log file automatically.

XSPEC> data scapellaa capellaa

!! This reads in all of the needed data files.

XSPEC> ignore bad

 File  1 Ignored channels    1 to    1
 File  1 Ignored channels   86 to   94
!! These channels are generally not recommended for use in model fits. Notice that when XSPEC is called interactively
!! from BROWSE that this last command is done automatically. Now we can proceed exactly as in the first example,
!! except that all of the fits will be to the combined SSS + MPC spectrum.

Conclusion

This gives the new user a brief glimpse of the power of the BROWSE and XSPEC utilities to explore the SSS database resident at the HEASARC. But the only way to really become familiar with our software and data is to get in there and play with it! If you encounter any problems with the BROWSE or XSPEC programs, or with the SSS data products, please contact us and we will provide any necessary assistance.


Next Proceed to the next article Previous Return to the previous article

Contents Select another article



HEASARC Home | Observatories | Archive | Calibration | Software | Tools | Students/Teachers/Public

Last modified: Monday, 19-Jun-2006 11:40:53 EDT

HEASARC Staff Scientist Position - Applications are now being accepted for a Staff Scientist with significant experience and interest in the technical aspects of astrophysics research, to work in the High Energy Astrophysics Science Archive Research Center (HEASARC) at NASA Goddard Space Flight Center (GSFC) in Greenbelt, MD. Refer to the AAS Job register for full details.