next up previous contents
Next: lorentz: lorentz line profile Up: Additive Model Components Previous: laor2: accretion disk with


logpar, zlogpar: log-parabolic blazar model

logpar is a power-law with an index which varies with energy as a log parabola. The zlogpar variant computes a redshifted spectrum. See for instance Massaro et al. (2004).


\begin{displaymath}
A(E) = K (E/pivotE)^{(-a-b\log{(E/pivotE)})}
\end{displaymath}

par1 a, slope at the pivot energy
par2 b, curvature term
par3 pivotE, fixed pivot energy (best near low end of energy range).
norm= K  

For zlogpar the formula and corresponding parameters are:


\begin{displaymath}
A(E) = K ([E(1+z)]/pivotE)^{(-a-b\log{([E(1+z)]/pivotE)})}
\end{displaymath}

par1 a, slope at the pivot energy
par2 b, curvature term
par3 pivotE, fixed pivot energy (best near low end of energy range).
par4 z, redshift
norm= K  


next up previous contents
Next: lorentz: lorentz line profile Up: Additive Model Components Previous: laor2: accretion disk with