next up previous contents
Next: srcut: synchrotron spectrum, cutoff Up: Additive Model Components Previous: smaug: optically-thin, spherically-symmetric thermal


snapec: galaxy cluster spectrum using SN yields

This model calculates the spectrum for a galaxy cluster using the apec model with relative abundances based on SN yields. The relative amounts of SNIa and SNII can be set and there are a wide variety of different SN yield calculations available. It is straightforward to add the results of new yield calculations as they become available in the literature. This model is described in Bulbul, Smith and Loewenstein 2012 (ApJ 753, 54). All the standard apec xset options can be used.

The parameters are:

par1 plasma temperature, keV
par2 number of SNe (in units of $10^9$)
par3 percentage of SNIa
par4 SNIa yield model
par5 SNII yield model
par6 Redshift, z
norm ${10^{-14}\over{4\pi[D_A(1+z)]^2}}\int n_en_HdV$, where $D_A$ is the angular diameter distance to the source (cm), $n_e$ and $n_H$ are the electron and H densities (cm$^{-3}$), respectively

The yield models available are as followed:

Number Model Reference
1 SN Type Ia, W7 R1, Table 2, Z=1.0
2 SN Type II, m$_{\rm u}$=13 R1, Table 1
3 SN Type II, m$_{\rm u}$=15 R1, Table 1
4 SN Type II, m$_{\rm u}$=18 R1, Table 1
5 SN Type II, m$_{\rm u}$=20 R1, Table 1
6 SN Type II, m$_{\rm u}$=25 R1, Table 1
7 SN Type II, m$_{\rm u}$=40 R1, Table 1
8 SN Type II, m$_{\rm u}$=70 R1, Table 1
9 SN Type II, m$_{\rm u}$=average (0-50) R1, Table 2
10 SN Type II, m$_{\rm u}$=average (0-70) R1, Table 2
11 SN Type II, m$_{\rm u}$=11, Z=1.0 R2, Table 5a
12 SN Type II, m$_{\rm u}$=12, Z=1.0 R2, Table 5a
13 SN Type II, m$_{\rm u}$=13, Z=1.0 R2, Table 5a
14 SN Type II, m$_{\rm u}$=15, Z=1.0 R2, Table 5a
15 SN Type II, m$_{\rm u}$=18, Z=1.0 R2, Table 5a
16 SN Type II, m$_{\rm u}$=19, Z=1.0 R2, Table 5a
17 SN Type II, m$_{\rm u}$=20, Z=1.0 R2, Table 5a
18 SN Type II, m$_{\rm u}$=22, Z=1.0 R2, Table 5a
19 SN Type II, m$_{\rm u}$=25, Z=1.0 R2, Table 5a
20 SN Type II, m$_{\rm u}$=30A, Z=1.0 R2, Table 5b
21 SN Type II, m$_{\rm u}$=30B, Z=1.0 R2, Table 5b
22 SN Type II, m$_{\rm u}$=35A, Z=1.0 R2, Table 5b
23 SN Type II, m$_{\rm u}$=35B, Z=1.0 R2, Table 5b
24 SN Type II, m$_{\rm u}$=35C, Z=1.0 R2, Table 5b
25 SN Type II, m$_{\rm u}$=40A, Z=1.0 R2, Table 5b
26 SN Type II, m$_{\rm u}$=40B, Z=1.0 R2, Table 5b
27 SN Type II, m$_{\rm u}$=40C, Z=1.0 R2, Table 5b
28 SN Type II, m$_{\rm u}$=12, Z=0.1 R2, Table 10a (P12A)
29 SN Type II, m$_{\rm u}$=13, Z=0.1 R2, Table 10a (P13A)
30 SN Type II, m$_{\rm u}$=15, Z=0.1 R2, Table 10a (P15A)
31 SN Type II, m$_{\rm u}$=18, Z=0.1 R2, Table 10a (P18A)
32 SN Type II, m$_{\rm u}$=20, Z=0.1 R2, Table 10a (P20A)
33 SN Type II, m$_{\rm u}$=22, Z=0.1 R2, Table 10a (P22A)
34 SN Type II, m$_{\rm u}$=25, Z=0.1 R2, Table 10a (P25A)
35 SN Type II, m$_{\rm u}$=30A, Z=0.1 R2, Table 10b (P30A)
36 SN Type II, m$_{\rm u}$=30B, Z=0.1 R2, Table 10b (P30B)
37 SN Type II, m$_{\rm u}$=35A, Z=0.1 R2, Table 10b (P35A)
38 SN Type II, m$_{\rm u}$=35B, Z=0.1 R2, Table 10b (P35B)
39 SN Type II, m$_{\rm u}$=35C, Z=0.1 R2, Table 10b (P35C)
40 SN Type II, m$_{\rm u}$=40A, Z=0.1 R2, Table 10b (P40A)
41 SN Type II, m$_{\rm u}$=40B, Z=0.1 R2, Table 10b (P40B)
42 SN Type II, m$_{\rm u}$=40C, Z=0.1 R2, Table 10b (P40C)
43 SN Type II, m$_{\rm u}$=11, Z=0.01 R2, Table 12a (P12A)
44 SN Type II, m$_{\rm u}$=13, Z=0.01 R2, Table 12a (P13A)
45 SN Type II, m$_{\rm u}$=15, Z=0.01 R2, Table 12a (P15A)
46 SN Type II, m$_{\rm u}$=18, Z=0.01 R2, Table 12a (P18A)
47 SN Type II, m$_{\rm u}$=20, Z=0.01 R2, Table 12a (P20A)
48 SN Type II, m$_{\rm u}$=22, Z=0.01 R2, Table 12a (P22A)
49 SN Type II, m$_{\rm u}$=25, Z=0.01 R2, Table 12a (P25A)
50 SN Type II, m$_{\rm u}$=30A, Z=0.01 R2, Table 12b (T30A)
51 SN Type II, m$_{\rm u}$=30B, Z=0.01 R2, Table 12b (T30B)
52 SN Type II, m$_{\rm u}$=35A, Z=0.01 R2, Table 12b (T35A)
53 SN Type II, m$_{\rm u}$=35B, Z=0.01 R2, Table 12b (T35B)
54 SN Type II, m$_{\rm u}$=35C, Z=0.01 R2, Table 12b (T35C)
55 SN Type II, m$_{\rm u}$=40A, Z=0.01 R2, Table 12b (T40A)
56 SN Type II, m$_{\rm u}$=40B, Z=0.01 R2, Table 12b (T40B)
57 SN Type II, m$_{\rm u}$=40C, Z=0.01 R2, Table 12b (T40C)
58 SN Type II, m$_{\rm u}$=12, Z=0.0001 R2, Table 14a (U12A)
59 SN Type II, m$_{\rm u}$=13, Z=0.0001 R2, Table 14a (U13A)
60 SN Type II, m$_{\rm u}$=15, Z=0.0001 R2, Table 14a (U15A)
61 SN Type II, m$_{\rm u}$=18, Z=0.0001 R2, Table 14a (U18A)
62 SN Type II, m$_{\rm u}$=20, Z=0.0001 R2, Table 14a (U20A)
63 SN Type II, m$_{\rm u}$=22, Z=0.0001 R2, Table 14a (U22A)
64 SN Type II, m$_{\rm u}$=25, Z=0.0001 R2, Table 14a (U25A)
65 SN Type II, m$_{\rm u}$=12, Z=0.0001 R2, Table 14b (U30A)
66 SN Type II, m$_{\rm u}$=13, Z=0.0001 R2, Table 14b (U30B)
67 SN Type II, m$_{\rm u}$=15, Z=0.0001 R2, Table 14b (U35A)
68 SN Type II, m$_{\rm u}$=18, Z=0.0001 R2, Table 14b (U35B)
69 SN Type II, m$_{\rm u}$=20, Z=0.0001 R2, Table 14b (U35C)
70 SN Type II, m$_{\rm u}$=22, Z=0.0001 R2, Table 14b (U40A)
71 SN Type II, m$_{\rm u}$=25, Z=0.0001 R2, Table 14b (U40B)
72 SN Type II, m$_{\rm u}$=25, Z=0.0001 R2, Table 14b (U40C)
73 SN Type II, m$_{\rm u}$=12, Z=0 R2, Table 16a (Z12A)
74 SN Type II, m$_{\rm u}$=13, Z=0 R2, Table 16a (Z13A)
75 SN Type II, m$_{\rm u}$=15A, Z=0 R2, Table 16a (Z15A)
76 SN Type II, m$_{\rm u}$=18, Z=0 R2, Table 16a (Z18A)
77 SN Type II, m$_{\rm u}$=20, Z=0 R2, Table 16a (Z20A)
78 SN Type II, m$_{\rm u}$=22, Z=0 R2, Table 16a (Z22A)
79 SN Type II, m$_{\rm u}$=25, Z=0 R2, Table 16a (Z25A)
80 SN Type II, m$_{\rm u}$=15B, Z=0 R2, Table 16a (Z15B)
81 SN Type II, m$_{\rm u}$=30A, Z=0 R2, Table 16b (Z30A)
82 SN Type II, m$_{\rm u}$=30B, Z=0 R2, Table 16b (Z30B)
83 SN Type II, m$_{\rm u}$=10-50 R3, Table 3
84 SN Type I, W7 R3, Table 3
85 SN Type I, W70 R3, Table 3
86 SN Type I, WDD1 R3, Table 3
87 SN Type I, WDD2 R3, Table 3
88 SN Type I, WDD3 R3, Table 3
89 SN Type I, CDD1 R3, Table 3
90 SN Type I, CDD3 R3, Table 3
91 SN Type II, m$_{\rm u}$=13, Z=0 R4, Table 2
92 SN Type II, m$_{\rm u}$=15, Z=0 R4, Table 2
93 SN Type II, m$_{\rm u}$=18, Z=0 R4, Table 2
94 SN Type II, m$_{\rm u}$=20, Z=0 R4, Table 2
95 SN Type II, m$_{\rm u}$=25, Z=0 R4, Table 2
96 SN Type II, m$_{\rm u}$=30, Z=0 R4, Table 2
97 SN Type II, m$_{\rm u}$=40, Z=0 R4, Table 2
98 SN Type II, m$_{\rm u}$=13, Z=0.001 R4, Table 2
99 SN Type II, m$_{\rm u}$=15, Z=0.001 R4, Table 2
100 SN Type II, m$_{\rm u}$=18, Z=0.001 R4, Table 2
101 SN Type II, m$_{\rm u}$=20, Z=0.001 R4, Table 2
102 SN Type II, m$_{\rm u}$=25, Z=0.001 R4, Table 2
103 SN Type II, m$_{\rm u}$=30, Z=0.001 R4, Table 2
104 SN Type II, m$_{\rm u}$=40, Z=0.001 R4, Table 2
105 SN Type II, m$_{\rm u}$=13, Z=0.004 R4, Table 2
106 SN Type II, m$_{\rm u}$=15, Z=0.004 R4, Table 2
107 SN Type II, m$_{\rm u}$=18, Z=0.004 R4, Table 2
108 SN Type II, m$_{\rm u}$=20, Z=0.004 R4, Table 2
109 SN Type II, m$_{\rm u}$=25, Z=0.004 R4, Table 2
110 SN Type II, m$_{\rm u}$=30, Z=0.004 R4, Table 2
111 SN Type II, m$_{\rm u}$=40, Z=0.004 R4, Table 2
112 SN Type II, m$_{\rm u}$=13, Z=0.02 R4, Table 2
113 SN Type II, m$_{\rm u}$=15, Z=0.02 R4, Table 2
114 SN Type II, m$_{\rm u}$=18, Z=0.02 R4, Table 2
115 SN Type II, m$_{\rm u}$=20, Z=0.02 R4, Table 2
116 SN Type II, m$_{\rm u}$=25, Z=0.02 R4, Table 2
117 SN Type II, m$_{\rm u}$=30, Z=0.02 R4, Table 2
118 SN Type II, m$_{\rm u}$=40, Z=0.02 R4, Table 2
119 SN Type Ia, W7 R5
120 SN Type Ia, cDEF R5
121 SN Type Ia, CDDT R5
122 SN Type Ia, ODDT R5

The references are

R1 Tsujimoto, T., et al. 1995, MNRAS, 277, 945
R2 Woosley, S.E. & Weaver, T.A. 1995, ApJS, 101, 181
R3 Iwamoto, K., et al. 1999, ApJ, 125, 439
R4 Nomoto, K., et al. 2006, Nuclear Physics A, 777, 424
R5 Maeda, K., et al. 2010, ApJ, 708, 1703


next up previous contents
Next: srcut: synchrotron spectrum, cutoff Up: Additive Model Components Previous: smaug: optically-thin, spherically-symmetric thermal